A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.
The Namib Desert is considered the oldest desert in the world and hyperarid for the last 5 million years. However, the environmental buffering provided by quartz and other translucent rocks supports extensive hypolithic microbial communities. In this study, open soil and hypolithic microbial communities have been investigated along an East-West transect characterized by an inverse fog-rainfall gradient. Multivariate analysis showed that structurally different microbial communities occur in soil and in hypolithic zones. Using variation partitioning, we found that hypolithic communities exhibited a fog-related distribution as indicated by the significant East-West clustering. Sodium content was also an important environmental factor affecting the composition of both soil and hypolithic microbial communities. Finally, although null models for patterns in microbial communities were not supported by experimental data, the amount of unexplained variation (68-97 %) suggests that stochastic processes also play a role in the assembly of such communities in the Namib Desert.
For land degradation monitoring and assessment (M&A) to be accurate and for sustainable land management (SLM) to be effective, it is necessary to incorporate multiple knowledges using a variety of methods and scales, and this must include the (potentially conflicting) perspectives of those who use the land. This paper presents a hybrid methodological framework that builds on approaches developed by UN Food & Agriculture Organisation's land degradation Assessment in Drylands (LADA), the World Conservation Approaches and Technologies (WOCAT) programme and the Dryland Development Paradigm (DDP), and is being applied internationally through the EU-funded DESIRE project. The framework suggests that M&A should determine the progress of SLM towards meeting sustainability goals, with results continually and iteratively enhancing SLM decisions. The framework is divided into four generic themes: (i) establishing land degradation and SLM context and sustainability goals; (ii) identifying, evaluating and selecting SLM strategies; (iii) selecting land degradation and SLM indicators and (iv) applying SLM options and monitoring land degradation and progress towards sustainability goals. This approach incorporates multiple knowledge sources and types (including land manager perspectives) from local to national and international scales. In doing so, it aims to provide outputs for policy-makers and land managers that have the potential to enhance the sustainability of land management in drylands, from the field scale to the region, and to national and international levels. The paper draws on operational experience from across the DESIRE project to break the four themes into a series of methodological steps, and provides examples of the range of tools and methods that can be used to operationalise each of these steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.