Background Although bacterial infections have been recognized as a possible cause of male infertility, the effect of bacterial infections on sperm quality and sperm DNA fragmentation remains controversial. The current study aimed to investigate the prevalence rate of bacterial infection in subfertile men and its effect on semen quality. Seminal fluid was collected from 172 male members of infertile couples attending the andrology infertility center and a group of 35 fertile subjects as a control. Sperm parameters and DNA fragmentation were evaluated based on the type of bacteria in all ejaculates. Results From the 172 patients investigated for infertility, 60 (34.88%) patients had a positive culture for pathogenic bacteria of different species. Leukocytospermia was significantly higher in infected samples in comparison with non-infected samples (p < 0.05). Sperm concentration and motility and morphology were significantly lower in infected than non-infected samples. Moreover, sperm DNA fragmentation was significantly higher in infected than non-infected samples. Besides, our results showed that sperm DNA fragmentation was correlated significantly with leukocytospermia (R: 0.22, p < 0.01). Conclusion The present study suggested that bacterial infection significantly correlated with leukocytospermia could impair male fertility potential through decreasing sperm motility, morphology, and DNA integrity.
Nowadays, infertility is no longer considered as an unsolvable disorder due to progresses in germ cells derived from stem lineage with diverse origins. Technical and ethical challenges push researchers to investigate various tissue sources to approach more efficient gametes. The purpose of the current study is to investigate the efficacy of a combined medium, retinoic acid (RA) together with Bone Morphogenic Protein-4 (BMP4), on differentiation of Bone Marrow Mesenchymal Stem Cells (BMMSCs) and adipose-derived mesenchymal stem cells (ADMSCs) into germ cells. Murine MSCs were obtained from both Bone Marrow (BM) and Adipose Tissue (AT) samples and were analyzed for surface markers to get further verification of their nature. BMMSCs and ADMSCs were induced into osteogenic and adipogenic lineage cells respectively, to examine their multipotency. They were finally differentiated into germ cells using media enriched with BMP4 for 4 days followed by addition of RA for 7 days (11 days in total). Analyzing of differentiation potential of BMMSCs- and ADMSCs were performed via Immunofluorescence, Flowcytometry and Real time-PCR techniques for germ cell-specific markers (Mvh, Dazl, Stra8 and Scp3). Mesenchymal surface markers (CD90 and CD44) were expressed on both BMMSCs and ADMSCs, while endothelial and hematopoietic cell markers (CD31 and CD45) had no expression. Finally, all germ-specific markers were expressed in both BM and AT. Although germ cells differentiated from ADMSCs showed faster growth and proliferation as well as easy collection, they significantly expressed germ-specific markers lower than BMMSCs. This suggests stronger differentiation potential of murine BMMSCs than ADMSCs.
Vitrification negatively affects the mitochondrial membrane potential (ΔΨm) in oocytes while also leading to increased reactive oxygen species (ROS), ATP depletion and induction of apoptosis in oocytes. Mitoquinone (MitoQ) is an antioxidant that protects mitochondrial membrane integrity from ROS. This study examined the effect of adding MitoQ to vitrification medium on mitochondrial function and embryo development in vitrified oocytes. Metaphase II (MII) stage oocytes were collected from NMRI mouse ovaries and preincubated for 20 min in a medium containing 0.02 µM of MitoQ. Next, oocytes were vitrified in medium supplemented with 0.02 μM of MitoQ (treatment group). The control group was processed in the same way but without exposure to MitoQ. After warming, oocyte survival rate, ΔΨm, cytoplasmic ROS and glutathione (GSH) levels and gene expression levels (Bcl2, BAX, and caspase3) were measured. In addition, the vitrified oocytes were fertilized in-vitro to assess developmental competence. The results showed that MitoQ improved survival and ΔΨm in treated vitrified oocytes. Treated oocytes showed lower ROS levels and higher GSH levels than did the control group. Furthermore, mRNA expression of the Bax/Bcl2 ratio and caspase3 were significantly lower in treated oocytes. These findings indicate that medium supplementation with 0.02 μM of MitoQ during vitrification can improve oocyte survival and developmental competency in mouse oocytes.
Background Cryopreservation of human spermatozoa has been identified as an efficient procedure to preserve fertility in men before any cancer therapy or surgical infertility treatment. Despite the benefits of the procedure, the deleterious effects of cryopreservation have been proven on sperm structure and function. This study aimed to evaluate seminal plasma effects on human sperm characteristics after cryopreservation, and compare the addition of normozoospermic and oligozoospermic seminal plasma in the prepared oligozoospermic samples. Semen samples were collected from fifty-five oligozoospermic men and the twenty fertile individuals who referred to the infertility center. At first, a semen analysis was carried out on each neat ejaculate, and then some were cryopreserved. The remainder of the semen was divided into two, one for seminal plasma removal and the other for sperm preparation. Then, the prepared spermatozoa were cryopreserved in three groups: one with, and another without the addition of oligozoospermic seminal plasma, and still another with the addition of normal seminal plasma. After thawing, sperm DNA integrity, viability, motility, and morphology were determined. Results The percentages of all parameters were significantly lower after cryopreservation in all groups compared to the fresh sample. However, this reduction was lower in the oligozoospermic samples cryopreserved with normal seminal plasma. Conclusion The results indicated that seminal plasma in oligozoospermic patients could not support sperm against cryo-injuries, an indication likely due to insufficient antioxidants and other protective components in oligozoospermic patients. However, normal seminal plasma could slightly preserve sperm characteristics after cryopreservation in oligozoospermic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.