Multiplex PCR method with shortened operation time was used for the simultaneous detection of total coliforms and Escherichia coli in distribution system of Arak city. It's recommended to be used at least as an initial screening test, and then the positive samples could be randomly tested by MPN.
Isoniazid (INH) is a central component of drug regimens used worldwide to treat tuberculosis. In respect to high GC content of Mycobacterium tuberculosis, nonsynonymous mutations are dominant in this group. In this study a collection of 145 M. tuberculosis isolates was used to evaluate the conferring mutations in nucleotide 1388 of katG gene (KatG463) in resistance to isoniazid. A PCR-RFLP method was applied in comparison with DNA sequencing and anti-mycobacterial susceptibility testing. From all studied patients, 98 (67.6%) were men, 47 (32.4%) were women, 3% were <15 and 9% were >65 years old; male to female ratio was 1:2.4. PCR result of katG for a 620-bp amplicon was successful for all purified M. tuberculosis isolates and there was no positive M. tuberculosis culture with PCR negative results (100% specificity). Subsequent PCR RFLP of the katG identified mutation at KatG463 in 33.3%, 57.8% and 59.2% of our clinically susceptible, multidrug resistant TB (MDR) and extensively drug resistant (XDR) isolates, respectively. Strains of H37Rv and Academic had no any mutations in this codon. M. bovis was used as a positive control for mutation in KatG463. Automated DNA sequencing of the katG amplicon from randomly selected INH-susceptible and resistant isolates verified 100% sequence accuracy of the point mutations detected by PCR-RFLP. We concluded that codon 463 was a polymorphic site that is associated to INH resistance (a missense or "quiet" mutation). RFLP results of katG amplicons were identical to those of sequence method. Our PCR-RFLP method has a potential application for rapid diagnosis of M. tuberculosis with a high specificity.
As Belarus is a high-burden MDR-TB country and treatment of drug-resistant TB is long and complicated, the findings of this study provided useful information to deliver effective community-based disease control measures and a proposed plane for the effective management of drug-resistant TB at the national level.
Identification of Mycobacterium tuberculosis and M. bovis is necessary for the application of adequate drug therapy. PCR amplification is a good tool for this purpose, but choosing proper target is of a great concern. We describe a PCR assay for fast detection of M. tuberculosis and M. bovis.As a BLAST and BLASTP search we selected regulatory gene whiB7 that encodes multi-drug resistance in this bacterium. Thirty clinical isolates of M. tuberculosis were sequenced and all the mutations in gene whiB7 were detected. The best set of several pairs of primers was selected and used in comparison by rpoB gene for differentiation of M. bovis, M. avium, M. kansasii, M. phlei, M. fortuitum, M. terrae, seven non-pathogenic Mycobacterium isolates and 30 clinical isolates of M. tuberculosis.It was proved that only clinical isolates of M. tuberculosis and M. bovis have positive bands of 667 bp whiB7. Other non-tuberculous and non-pathogenic isolates did not show any positive sign. Furthermore, 667-bp PCR products of whiB7 gene were observed for ten positive sputum samples (preliminarily approved to be positive for M. tuberculosis by commercially real-time based method), but no bands were detected in 5 negative sputum samples. RpoB gene could not differentiate non-tuberculous strains and non-pathogenic isolates from pathogenic clinical isolates. We concluded that PCR amplification of the gene coding for the WhiB7 protein could be successfully used as a good tool for rapid identification of M. tuberculosis and M. bovis. We propose application of this method as a rapid and simple approach in mycobacteriological laboratories.
Highlights
The genomes and proteomes of 12
Bifidobacterium
and 46
Lactobacillus
were reviewed and then compared for bacteriocin identification.
NCBI-Genome, UniProt-Proteome, Bactibase, and BAGL4 databases, as well as BLASTP, and Clustal Omega can be used for bacteriocin mining.
Lactobacillus
species have more diversity and abundance of bacteriocin compared to
Bifidobacterium
species.
Notably
, L. sakei, L. plamtarum, L. reuteri, L. fermentum,
and
L. casei
had the highest pathogen inhibition (
E. coli
MG 1655); respectively.
A set of
Lactobacillus
bacteria including
L. sakei, L. reuteri, L. fermentum, and L. casei
can be proposed as a biosecure and safe solution to control gastrointestinal pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.