Cyanobacteria are the simplest organisms known to have a circadian clock. A circadian clock gene cluster kaiABC was cloned from the cyanobacterium Synechococcus. Nineteen clock mutations were mapped to the three kai genes. Promoter activities upstream of the kaiA and kaiB genes showed circadian rhythms of expression, and both kaiA and kaiBC messenger RNAs displayed circadian cycling. Inactivation of any single kai gene abolished these rhythms and reduced kaiBC-promoter activity. Continuous kaiC overexpression repressed the kaiBC promoter, whereas kaiA overexpression enhanced it. Temporal kaiC overexpression reset the phase of the rhythms. Thus, a negative feedback control of kaiC expression by KaiC generates a circadian oscillation in cyanobacteria, and KaiA sustains the oscillation by enhancing kaiC expression.
Cryptochrome flavoproteins, which share sequence homology with light-dependent DNA repair photolyases, function as photoreceptors in plants and circadian clock components in animals. Here, we coupled sequencing of an Arabidopsis cryptochrome gene with phylogenetic, structural, and functional analyses to identify a new cryptochrome class (cryptochrome DASH) in bacteria and plants, suggesting that cryptochromes evolved before the divergence of eukaryotes and prokaryotes. The cryptochrome crystallographic structure, reported here for Synechocystis cryptochrome DASH, reveals commonalities with photolyases in DNA binding and redox-dependent function, despite distinct active-site and interaction surface features. Whole genome transcriptional profiling together with experimental confirmation of DNA binding indicated that Synechocystis cryptochrome DASH functions as a transcriptional repressor.
We have used a luciferase reporter gene and continuous automated monitoring of bioluminescence to demonstrate unequivocally that cyanobacteria exhibit circadian behaviors that are fundamentally the same as circadian rhythms of eukaryotes. We also show that these rhythms can be studied by molecular methods in Synechococcus sp. PCC7942, a strain for which genetic transformation is well established. A promoterless segment of the Vibrio harveyi luciferase structural genes (luxAB) was introduced downstream of the promoter for the Synechococcus psbAI gene, which encodes a photosystem H protein. This reporter construction was recombined into the Synechococcus chromosome, and bioluminescence was monitored under conditions of constant illumination following entrainment to light and dark cycles. The reporter strain, AMC149, expressed a rhythm of bioluminescence which satisfies the criteria of circadian rhythms: persistence in constant conditions, phase resetting by light/dark signals, and temperature compensation of the period. Rhythmic changes in levels of the native psbAl message following light/dark entrainment supported the reporter data.The behavior of this prokaryote disproves the dogma that circadian mechanisms must be based on eukaryotic cellular organization. Moreover, the cyanobacterial strain described here provides an efficient experimental system for molecular analysis of the circadian clock.Despite decades of study, the biochemical mechanism of circadian clocks remains a mystery. Circadian rhythms have been found in a wide spectrum of organisms (1) but, until recently, only in eukaryotes (2, 3). In the last few years circadian rhythms have been reported in the prokaryotic cyanobacteria (4-7). Unfortunately, these studies employed genetically intractable cyanobacterial strains and laborious assays to detect the rhythms. These difficulties have impeded the demonstration that the prokaryotic rhythms are equivalent to the circadian rhythms of eukaryotes.Proof that prokaryotes have circadian pacemakers has threefold significance. (i) With regard to the evolutionary emergence of circadian behavior: Can the simpler organization of prokaryotes support a circadian mechanism? Is circadian behavior adaptive for prokaryotic niches as well as for eukaryotic niches? (ii) The previous failure of attempts to discover circadian clocks in prokaryotes has led to a "eukaryotes-only" dogma which limited the types ofmodels that have been considered for the underlying clock mechanism (3). Now that prokaryotic cellular organization appears to be fully competent to generate circadian oscillations, a broader range of mechanisms can be seriously evaluated as candidates for the circadian pacemaker. (iii) The realization thatThe publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.prokaryotes express circadian behavior is significant from the perspective of designing an optimal s...
We wanted to identify genes that are controlled by the circadian clock in the prokaryotic cyanobacterium Synechococcus sp. strain PCC 7942. To use luciferase as a reporter to monitor gene expression, bacterial luciferase genes (luxAB) were inserted randomly into the Synechococcus genome by conjugation with Escherichia coli and subsequent homologous recombination. The resulting transformed clones were then screened for bioluminescence using a newly developed cooled-CCD camera system. We screened -30,000transformed Synechococcus colonies and recovered -800 clones whose bioluminescence was bright enough to be easily monitored by the screening apparatus. Unexpectedly, the bioluminescence expression patterns of almost all of these 800 colonies clearly manifested circadian rhythmicity. These rhythms exhibited a range of waveforms and amplitudes, and they also showed a variety of phase relationships. We also found bioluminescence rhythms expressed by cyanobacterial colonies in which the luciferase gene set was coupled to the promoters of several known genes. Together, these results indicate that control of gene expression by circadian clocks may be more widespread than expected thus far. Moreover, our results show that screening organisms in which promoterless luciferase genes have been inserted randomly throughout the genome by homologous recombination provides an extremely sensitive method to explore differential gene expression.
Both regulated expression of the clock genes kaiA, kaiB, and kaiC and interactions among the Kai proteins are proposed to be important for circadian function in the cyanobacterium Synechococcus sp. strain PCC 7942. We have identified the histidine kinase SasA as a KaiC-interacting protein. SasA contains a KaiB-like sensory domain, which appears sufficient for interaction with KaiC. Disruption of the sasA gene lowered kaiBC expression and dramatically reduced amplitude of the kai expression rhythms while shortening the period. Accordingly, sasA disruption attenuated circadian expression patterns of all tested genes, some of which became arrhythmic. Continuous sasA overexpression eliminated circadian rhythms, whereas temporal overexpression changed the phase of kaiBC expression rhythm. Thus, SasA is a close associate of the cyanobacterial clock that is necessary to sustain robust circadian rhythms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.