Miniature inverted-repeat transposable elements (MITEs) are dispersed in large numbers within the genomes of eukaryotes although almost all are thought to be inactive. Plants have two major groups of such MITEs: Tourist and Stowaway. Mobile MITEs have been reported previously in rice but no active MITEs have been found in dicotyledons. Here, we provide evidence that Stowaway MITEs can be mobilized in the potato and that one of them causes a change of tuber skin color as an obvious phenotypic variation. In an original red-skinned potato clone, the gene encoding for a flavonoid 39,59-hydroxylase, which is involved in purple anthocyanin synthesis, has been inactivated by the insertion of a Stowaway MITE named dTstu1 within the first exon. However, dTstu1 is absent from this gene in a purple somaclonal variant that was obtained as a regenerated plant from a protoplast culture of the red-skinned potato. The color change was attributed to reversion of flavonoid 39,59-hydroxylase function by removal of dTstu1 from the gene. In this purple variant another specific transposition event has occurred involving a MITE closely related to dTstu1. Instead of being fossil elements, Stowaway MITEs, therefore, still have the ability to become active under particular conditions as represented by tissue culturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.