In multi-FPGA prototyping systems for circuit verification, serialized time-multiplexed I/O technique is used because of the limited number of I/O pins of an FPGA. The verification time depends on a selection of inter-FPGA signals to be time-multiplexed. In this paper, we propose a method that minimizes the verification time of multi-FPGA systems by finding an optimal selection of inter-FPGA signals to be timemultiplexed. In the experiments, it is shown that the estimated verification time is improved 38.2% on average compared with conventional methods.
Multi-FPGA prototyping systems are widely used to verify logic circuit designs. To implement a large circuit using such a system, the circuit is partitioned into multiple FPGAs. Subsequently, sub-circuits assigned to FPGAs are connected using interconnection resources among the FPGAs. Because of limited resources, time-multiplexed I/Os are used to accommodate all signals in exchange for system speed. In this study, we propose an optimization method of inter-FPGA connections for multi-FPGA systems with time-multiplexed I/Os to shorten the verification time by accelerating the systems. Our method decides whether each inter-FPGA signal is transferred by a normal I/O or a time-multiplexed I/O, which is slower than a normal I/O but can transfer multiple signals. Our method optimizes inter-FPGA connections not only between a single FPGA pair, but among all the FPGAs. Experiments showed that for four-way partitioned circuits, our method obtains an average system clock period 16.0% shorter than that of a conventional method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.