The nitrogen-vacancy (NV) center in diamond has been recognized as a high-sensitivity nanometer-scale metrology platform. Thermometry has been a recent focus, with attention largely confined to room temperature applications. Temperature sensing at low temperatures, however, remains challenging as the sensitivity decreases for many commonly used techniques, which rely on a temperature dependent frequency shift of NV center's spin resonance and its control with microwaves. Here we use an alternative approach that does not require microwaves, ratiometric all-optical thermometry, and demonstrate that it may be utilized to liquid nitrogen temperatures without deterioration of the sensitivity. The use of an array of nanodiamonds embedded within a portable polydimethylsiloxane (PDMS) sheet provides a versatile temperature sensing platform that can probe a wide variety of systems without the configurational restrictions needed for applying microwaves. With this device, we observe a temperature gradient over tens of microns in a ferromagnetic-insulator substrate (yttrium iron garnet, YIG) under local heating by a resistive heater. This thermometry technique provides a cryogenically compatible, microwavefree, minimally invasive approach capable of probing local temperatures with few restrictions on the substrate materials.I.
The detection of photocurrents is central to understanding and harnessing the interaction of light with matter. Although widely used, transport-based detection averages over spatial distributions and can suffer from low photocarrier collection efficiency. Here, we introduce a contact-free method to spatially resolve local photocurrent densities using a proximal quantum magnetometer. We interface monolayer MoS 2 with a near-surface ensemble of nitrogen-vacancy centers in diamond and map the generated photothermal current distribution through its magnetic field profile. By synchronizing the photoexcitation with dynamical decoupling of the sensor spin, we extend the sensor's quantum coherence and achieve sensitivities to alternating current densities as small as 20 nA/µm. Our spatiotemporal measurements reveal that the photocurrent circulates as vortices, manifesting the Nernst effect, and rises with a timescale indicative of the system's thermal properties. Our method establishes an unprecedented probe for optoelectronic phenomena, ideally suited to the emerging class of two-dimensional materials, and stimulates applications towards large-area photodetectors and stick-on sources of magnetic fields for quantum control. * Φ/ 0.5 * 8 * 2 ,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.