The present study is devoted to prepare a new antibacterial and antifungal agent based on in situ-synthesized silver nanoparticles at room temperature using Rosmarinus officinalis (R. officinalis) leaf extract. The Ag-NPs characterization by UV-visible, SEM, TEM and XRD revealed that the particles sizes were in the range of 10-33 nm. In this study, hydroalcoholic extracts were used with ultrasonic method. Ultrasonication has recently received attention as a novel bioprocessing tool for process intensification in many areas of downstream processing. The antimicrobial activities of T. daenensis and S. marianum extracts with and without the presence of Ag-NPs were investigated at concentrations from 12.5 to 50 mg/mL against Staphylococcus aureus (S. aureus, Gram-positive organism) and Escherichia coli (E. coli, Gram-negative organism), and fungal strains were Aspergillus oryzae (A. oryzae) and Candida albicans (C. albicans). Antimicrobial activity determined using agar disc diffusion method revealed that the activities of Ag-NPs/T. daenensis were superior to Ag-NPs/S. marianum and extracts (T. daenensis and S. marianum). The medicinal plant extract can be used to synthesize the Ag-NPs as an eco-friendly and inexpensive method in large scale. The results showed that the prepared Ag-NPs/extracts as good antibacterial and antifungal agents can be potentially applied against rapidly increasing of antibiotic resistance.
The present study is devoted to construction of new antibacterial and anti-fungal agent based on combination of in situ synthesized silver nanoparticles with plants extract, while through a green synthesis Ag-NPs were synthesized at room temperature using Rosmarinus officinalis leaf extract. In this study, hydroalcoholic extracts have been used for with Ultrasonic method. Ultrasonication has recently received attention as a novel bioprocessing tool for process intensification in many areas of downstream processing. Antimicrobial activities of T. daenensis and S. marianum extracts in the presence and absence of Ag-NPs was investigated at concentrations between 12.5-50 mg/mL against Staphylococcus aureus (Gram-positive organisms), Escherichia coli (Gram-negative organisms), and fungal strains were Aspergillus oryzae, Candida albicans. Antimicrobial activity determined using agar disc diffusion method reveal that activities of Ag-NPs/T. daenensis were superior to Ag-NPs/S. marianum and extracts (T. daenensis and S. marianum). Medicinal plant extracts is able to synthesis the Ag-NPs as an eco-friendly and inexpensive method in large scale. The extract/Ag-NPs has good antibacterial and antifungal activity that candidate them as potential tool to combat against rapidly increasing antibiotic resistance. Antioxidant content of the extracts was also determined and demonstrated the highest antioxidant activities associated with the shoot of Thymusdaenensis (Total phenolic content: 198.71 ± 1.50 mg gallic acid equivalents/g of dried extract, DPPH: 48.80 ± 0.59 % inhibition and Total Flavonoid Content: 172.42 ± 1.43 mg rutin equivalents (RuE)/g of dried extract).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.