Background: The extent of lung involvement in Coronavirus Disease 2019 (COVID-19) pneumonia, quantified on computed tomography (CT), is an established biomarker for prognosis and guides clinical decision making. The clinical standard is semi-quantitative scoring of lung involvement by an experienced reader. We aim to compare the performance of automated deep-learning-and threshold-based methods to the manual semi-quantitative lung scoring. Further, we aim to investigate an optimal threshold for quantification of involved lung in COVID pneumonia chest CT, using a multi-center dataset. Methods: In total 250 patients were included, 50 consecutive patients with RT-PCR confirmed COVID-19 from our local institutional database, and another 200 patients from four international datasets (n=50 each). Lung involvement was scored semi-quantitatively by three experienced radiologists according to the established chest CT score (CCS) ranging from 0-25. Inter-rater reliability was reported by the intraclass correlation coefficient (ICC). Deep-learning-based segmentation of ground-glass and consolidation was obtained by CT Pulmo Auto Results prototype plugin on IntelliSpace Discovery (Philips Healthcare, The Netherlands). Threshold-based segmentation of involved lung was implemented using an open-source tool for whole-lung segmentation under the presence of severe pathologies (R231CovidWeb, Hofmanninger et al., 2020) and consecutive quantitative assessment of lung attenuation. The best threshold was investigated by training and testing a linear regression of deep-learning and threshold-based results in a five-fold cross validation strategy. Results: Median CCS among 250 evaluated patients was 10 [6-15]. Inter-rater reliability of the CCS was excellent [ICC 0.97 (0.97-0.98)]. Best attenuation threshold for identification of involved lung was −522 HU.While the relationship of deep-learning-and threshold-based quantification was linear and strong (r 2 deep-learning vs. threshold =0.84), both automated quantification methods translated to the semi-quantitative CCS in a nonlinear fashion, with an increasing slope towards higher CCS (r 2 deep-learning vs. CCS = 0.80, r 2 threshold vs. CCS =0.63).
Virtual non-calcium (VNCa) images from dual-energy computed tomography (DECT) have shown high potential to diagnose bone marrow disease of the spine, which is frequently disguised by dense trabecular bone on conventional CT. In this study, we aimed to define reference values for VNCa bone marrow images of the spine in a large-scale cohort of healthy individuals. DECT was performed after resection of a malignant skin tumor without evidence of metastatic disease. Image analysis was fully automated and did not require specific user interaction. The thoracolumbar spine was segmented by a pretrained convolutional neuronal network. Volumetric VNCa data of the spine’s bone marrow space were processed using the maximum, medium, and low calcium suppression indices. Histograms of VNCa attenuation were created for each exam and suppression setting. We included 500 exams of 168 individuals (88 female, patient age 61.0 ± 15.9). A total of 8298 vertebrae were segmented. The attenuation histograms’ overlap of two consecutive exams, as a measure for intraindividual consistency, yielded a median of 0.93 (IQR: 0.88–0.96). As our main result, we provide the age- and sex-specific bone marrow attenuation profiles of a large-scale cohort of individuals with healthy trabecular bone structure as a reference for future studies. We conclude that artificial-intelligence-supported, fully automated volumetric assessment is an intraindividually robust method to image the spine’s bone marrow using VNCa data from DECT.
Background Diagnosing a coronavirus disease 2019 (COVID-19) infection with high specificity in chest computed tomography (CT) imaging is considered possible due to distinctive imaging features of COVID-19 pneumonia. Since other viral non-COVID pneumonia show mostly a different distribution pattern, it is reasonable to assume that the patterns observed caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a consequence of its genetically encoded molecular properties when interacting with the respiratory tissue. As more mutations of the initial SARS-CoV-2 wild-type with varying aggressiveness have been detected in the course of 2021, it became obvious that its genome is in a state of transformation and therefore a potential modification of the specific morphological appearance in CT may occur. The aim of this study was to quantitatively analyze the morphological differences of the SARS-CoV-2-B.1.1.7 mutation and wildtype variant in CT scans of the thorax. Methods We analyzed a dataset of 140 patients, which was divided into pneumonias caused by n=40 wildtype variants, n=40 B.1.1.7 variants, n=20 bacterial pneumonias, n=20 viral (non-COVID) pneumonias, and a test group of n=20 unremarkable CT examinations of the thorax. Semiautomated 3D segmentation of the lung tissue was performed for quantification of lung pathologies. The extent, ratio, and specific distribution of inflammatory affected lung tissue in each group were compared in a multivariate group analysis. Results Lung segmentation revealed significant difference between the extent of ground glass opacities (GGO) or consolidation comparing SARS-CoV-2 wild-type and B.1.1.7 variant. Wildtype and B.1.1.7 variant showed both a symmetric distribution pattern of stage-dependent GGO and consolidation within matched COVID-19 stages. Viral non-COVID pneumonias had significantly fewer consolidations than the bacterial, but also than the COVID-19 B.1.1.7 variant groups. Conclusions CT based segmentation showed no significant difference between the morphological appearance of the COVID-19 wild-type variant and the SARS-CoV-2 B.1.1.7 mutation. However, our approach allowed a semiautomatic quantification of bacterial and viral lung pathologies. Quantitative CT image analyses, such as the one presented, appear to be an important component of pandemic preparedness considering an organism with ongoing genetic change, to describe a potential arising change in CT morphological appearance of possible new upcoming COVID-19 variants of concern.
Objectives: Positron emission tomography (PET) is currently considered the non-invasive reference standard for lymph node (N-)staging in lung cancer. However, not all patients can undergo this diagnostic procedure due to high costs, limited availability, and additional radiation exposure. The purpose of this study was to predict the PET result from traditional contrast-enhanced computed tomography (CT) and to test different feature extraction strategies. Methods: In this study, 100 lung cancer patients underwent a contrast-enhanced 18F-fluorodeoxyglucose (FDG) PET/CT scan between August 2012 and December 2019. We trained machine learning models to predict FDG uptake in the subsequent PET scan. Model inputs were composed of (i) traditional “hand-crafted” radiomics features from the segmented lymph nodes, (ii) deep features derived from a pretrained EfficientNet-CNN, and (iii) a hybrid approach combining (i) and (ii). Results: In total, 2734 lymph nodes [555 (20.3%) PET-positive] from 100 patients [49% female; mean age 65, SD: 14] with lung cancer (60% adenocarcinoma, 21% plate epithelial carcinoma, 8% small-cell lung cancer) were included in this study. The area under the receiver operating characteristic curve (AUC) ranged from 0.79 to 0.87, and the scaled Brier score (SBS) ranged from 16 to 36%. The random forest model (iii) yielded the best results [AUC 0.871 (0.865–0.878), SBS 35.8 (34.2–37.2)] and had significantly higher model performance than both approaches alone (AUC: p < 0.001, z = 8.8 and z = 22.4; SBS: p < 0.001, z = 11.4 and z = 26.6, against (i) and (ii), respectively). Conclusion: Both traditional radiomics features and transfer-learning deep radiomics features provide relevant and complementary information for non-invasive N-staging in lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.