We have developed a sensitive assay for the AMPactivated protein kinase kinase, the upstream component in the AMP-activated protein kinase cascade. Phosphorylation and activation of the downstream kinase by the upstream kinase absolutely requires AMP and is antagonized by high (millimolar) concentrations of ATP. We have purified the upstream kinase >1000-fold from rat liver; a variety of evidence indicates that the catalytic subunit may be a polypeptide of 58 kDa. The physical properties of the downstream and upstream kinases, e.g. catalytic subunit masses (63 versus 58 kDa) and native molecular masses (190 versus 195 kDa), are very similar. However, unlike the downstream kinase, the upstream kinase is not inactivated by protein phosphatases. The upstream kinase phosphorylates the downstream kinase at a single major site on the ␣ subunit, i.e. threonine 172, which lies in the "activation segment" between the DFG and APE motifs. This site aligns with activating phosphorylation sites on many other protein kinases, including Thr 177 on calmodulindependent protein kinase I. As well as suggesting a mechanism of activation of AMP-activated protein kinase, this finding is consistent with our recent report that the AMP-activated protein kinase kinase can slowly phosphorylate and activate calmodulin-dependent protein kinase I, at least in vitro (Hawley, S. A., Selbert, M.
Fluorescence two-dimensional differential gel electrophoresis (2-D DIGE*) is a new development in protein detection for two-dimensional gels. Using mouse liver homogenates (control and paracetamol (N-acetyl-p-aminophenol, APAP)-treated), we have determined the quantitative variation in the 2-D DIGE process and established statistically valid thresholds for assigning quantitative changes between samples. Thresholds were dependent on normalised spot volume, ranged from approximately 1.2 fold for large volume spots to 3.5 fold for small volume spots and were not markedly affected by the particular cyanine dye combination or by multiple operators carrying out the dye labelling reaction. To minimise the thresholds, substantial user editing was required when using ImageMaster 2D-Elite software. The difference thresholds were applied to the test system and quantitative protein differences were determined using replicate gels of pool samples and single gels from multiple individual animals (control vs treated in each gel). Throughout, the differences revealed with a particular cyanine dye combination were mirrored almost without exception when the dye combination was reversed. Both pool and individual sample analyses provided unique data to the study. The inter-animal response variability in inbred mice was approximately nine times that contributed by the 2-D DIGE process. A number of the most frequently observed protein changes resulting from APAP-treatment were identified by mass spectrometry. Several of these can be rationalised based on available data on the mechanism of APAP hepatotoxicity but others cannot, indicating that proteomics can provide further insights into the biochemical basis of APAP toxicity.
The AMP-activated protein kinase (AMPK) cascade is activated by an increase in the AMP/ATP ratio within the cell. AMPK is regulated allosterically by AMP and by reversible phosphorylation. Threonine-172 within the catalytic subunit (alpha) of AMPK (Thr(172)) was identified as the major site phosphorylated by the AMP-activated protein kinase kinase (AMPKK) in vitro. We have used site-directed mutagenesis to study the role of phosphorylation of Thr(172) on AMPK activity. Mutation of Thr(172) to an aspartic acid residue (T172D) in either alpha1 or alpha2 resulted in a kinase complex with approx. 50% the activity of the corresponding wild-type complex. The activity of wild-type AMPK decreased by greater than 90% following treatment with protein phosphatases, whereas the activity of the T172D mutant complex fell by only 10-15%. Mutation of Thr(172) to an alanine residue (T172A) almost completely abolished kinase activity. These results indicate that phosphorylation of Thr(172) accounts for most of the activation by AMPKK, but that other sites are involved. In support of this we have shown that AMPKK phosphorylates at least two other sites on the alpha subunit and one site on the beta subunit. Furthermore, we provide evidence that phosphorylation of Thr(172) may be involved in the sensitivity of the AMPK complex to AMP.
Fluorescence two-dimensional differential gel electrophoresis (2-D DIGE*) is a new development in protein detection for two-dimensional gels. Using mouse liver homogenates (control and paracetamol (N-acetyl-p-aminophenol, APAP)-treated), we have determined the quantitative variation in the 2-D DIGE process and established statistically valid thresholds for assigning quantitative changes between samples. Thresholds were dependent on normalised spot volume, ranged from approximately 1.2 fold for large volume spots to 3.5 fold for small volume spots and were not markedly affected by the particular cyanine dye combination or by multiple operators carrying out the dye labelling reaction. To minimise the thresholds, substantial user editing was required when using ImageMaster 2D-Elite software. The difference thresholds were applied to the test system and quantitative protein differences were determined using replicate gels of pool samples and single gels from multiple individual animals (control vs treated in each gel). Throughout, the differences revealed with a particular cyanine dye combination were mirrored almost without exception when the dye combination was reversed. Both pool and individual sample analyses provided unique data to the study. The inter-animal response variability in inbred mice was approximately nine times that contributed by the 2-D DIGE process. A number of the most frequently observed protein changes resulting from APAP-treatment were identified by mass spectrometry. Several of these can be rationalised based on available data on the mechanism of APAP hepatotoxicity but others cannot, indicating that proteomics can provide further insights into the biochemical basis of APAP toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.