The continuing trend towards higher data rates in wireless communication systems will, in addition to a higher spectral efficiency and lowest signal processing latencies, lead to throughput requirements for the digital baseband signal processing beyond 100 Gbit/s, which is at least one order of magnitude higher than the tens of Gbit/s targeted in the 5G standardization. At the same time, advances in silicon technology due to shrinking feature sizes and increased performance parameters alone won't provide the necessary gain, especially in energy efficiency for wireless transceivers, which have tightly constrained power and energy budgets. In this paper, we highlight the challenges for wireless digital baseband signal processing beyond 100 Gbit/s and the limitations of today's architectures. Our focus lies on the channel decoding and MIMO detection, which are major sources of complexity in digital baseband signal processing. We discuss techniques on algorithmic and architectural level, which aim to close this gap. For the first time we show Turbo-Code decoding techniques towards 100 Gbit/s and a complete MIMO receiver beyond 100 Gbit/s in 28 nm technology.
The continuous demands for higher throughput, higher spectral efficiency, lower latencies, lower power and large scalability in communication systems impose large challenges on the baseband signal processing. In the future, throughput requirements far beyond 100 Gbit/s are expected, which is much higher than the tens of Gbit/s targeted in the 5G standardization. At the same time, advances in silicon technology due to shrinking feature sizes and increased performance parameters alone will not provide the necessary gain, especially in energy efficiency for wireless transceivers, which have tightly constrained power and energy budgets. The focus of this paper lies on channel coding, which is a major source of complexity in digital baseband processing. We will highlight implementation challenges for the most advanced channel coding techniques, i.e. Turbo codes, Low Density Parity Check (LDPC) codes and Polar codes and present decoder architectures for all three code classes that are designed for highest throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.