Hemp concrete is considered to be a carbon negative material. Hemp absorbs CO2 during the growth and lime needs CO2 for carbonation. The material, which has good thermal insulation properties, is used as a non-bearing wall material or plaster. For such use the hygrothermal properties of a material must be well known especially when indoor insulation is in focus. In the current study hemp concrete produced in two different ways was in focus and following the hygrothermal properties of hemp concrete as a building material were studied: water absorption (EN 1015-18), water vapour sorption (EN 12571), water vapour permeability (EN 12572) and thermal conductivity (EN 12667). The results of the study can be used in hygrotheramal calculations and modelling.
Spray polyurethane foam (SPF) roofs are widely used in North America. Much fewer usage examples and experience can be found in Northern European cold climatic conditions. This study analyses hygrothermal performance and the reasons for the roof’s degradation and end of service life of an SPF and polyurea roof. The service life of the roof is over and major reconstruction is needed eight year after construction. The current study uses field measurements included onsite temperature and humidity measurements and extensive surveying, the roof was opened from several locations and test samples were taken for laboratory tests. The influence of UV radiation on the loss of adhesion was tested. Solar radiation quickly degraded the top surface of the in-situ sprayed polyurethane foam insulation causing a weak connection between the foam layers. Due to mechanically damaged and UV degraded polyurea roofing, water has leaked into the SPF. The water inside or below the foam evaporated during sunny days and broke the adhesion of different foam layers. Larger foam blisters were observed on the upper part of the insulation caused by high water vapour pressure. This is considered the most realistic cause of separation of the SPF layers. The analyse of hygrothermal performance, service life, and durability prediction should be included into the design process, especially for structures with small or without long term performance experience.
External Thermal Insulation Composite Systems (ETICS) are widely used in the northern hemisphere in retrofitted and new external walls. The outer layer of ETICS is usually a thin layer of plaster. The effects of temperature and humidity on the hygrothermal behaviour and mechanical properties of thin plasters have been quantified by conducting several experiments to determine the possibility of crack formation. Combinations of plasters using four types of binders are tested: mineral, polymer, silicate and silicone. Plasters are tested as four systems consisting of a base coat, a glass-fibre reinforcement mesh and a finishing coat. Sorption curves of the plaster systems are determined to gather data for numerical simulations. The coefficients of thermal and hygroscopic expansion are determined. The modulus of elasticity and tensile strength of four different plasters are measured to allow the calculation of crack formation in ETICS and suggest the distances between the deformation joints. The method demonstrated in this paper makes it possible to calculate the crack formation caused by the temperature and moisture shrinkage in the thin exterior plaster of ETICS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.