This investigation explores piezoelectricity generation from ZnO nanorods, which were grown on silver coated textile cotton fabrics using the low temperature aqueous chemical growth method. The morphology and crystal structure studies were carried out by x-ray diffraction, scanning electron microscopic and high resolution transmission electron microscopic techniques, respectively. ZnO nanorods were highly dense, well aligned, uniform in spatial distribution and exhibited good crystal quality. The generation of piezoelectricity from fabricated ZnO nanorods grown on textile cotton fabrics was measured using contact mode atomic force microscopy. The average output voltage generated from ZnO nanorods was measured to be around 9.5 mV. This investigation is an important achievement regarding the piezoelectricity generation on textile cotton fabric substrate. The fabrication of this device provides an alternative approach for a flexible substrate to develop devices for energy harvesting and optoelectronic technology on textiles.
In the present work, NiCo2O4 nanostructures are fabricated in three dimensions (3D) on nickel foam by the hydrothermal method. The nanomaterial was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The nanostructures exhibit nanoneedle-like morphology grown in 3D with good crystalline quality. The nanomaterial is composed of nickel, cobalt and oxygen atoms. By using the favorable porosity of the nanomaterial and the substrate itself, a sensitive glucose sensor is proposed by immobilizing glucose oxidase. The presented glucose sensor has shown linear response over a wide range of glucose concentrations from 0.005 mM to 15 mM with a sensitivity of 91.34 mV/decade and a fast response time of less than 10 s. The NiCo2O4 nanostructures-based glucose sensor has shown excellent reproducibility, repeatability and stability. The sensor showed negligible response to the normal concentrations of common interferents with glucose sensing, including uric acid, dopamine and ascorbic acid. All these favorable advantages of the fabricated glucose sensor suggest that it may have high potential for the determination of glucose in biological samples, food and other related areas.
In this work, a copper/zinc-oxide (ZnO)-nanorods-based Schottky diode was fabricated on the textile fabric substrate. ZnO nanorods were grown on a silver-coated textile fabric substrate by using the hydrothermal route. Scanning electron microscopy and x-ray diffraction techniques were used for the structural study. The electrical characterization of copper/ZnO-nanorodsbased Schottky diodes was investigated by using a semiconductor parameter analyzer and an impedance spectrometer. The current density-voltage (J-V) and capacitance-voltage (C-V) measurements were used to estimate the electrical parameters. The threshold voltage (V th ), ideality factor (η), barrier height (φ b ), reverse saturation current density (J s ), carrier concentration (N D ) and built-in potential (V bi ) were determined by using experimental data and (simulated) curve fitting. This study describes the possible fabrication of electronic and optoelectronic devices on textile fabric substrate with an acceptable performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.