Anthrax is a rapidly fatal infectious disease affecting herbivores and people. In the farm ani¬mals, cattle and sheep are more susceptible, followed by goats and horses, while dwarf pigs and Algerian sheep are relatively resistant. Bacillus anthracis, the causative agent of anthrax, produces spores and persists for decades in the soil, initiating an outbreak through a favorable climate shift. Anthrax is enzootic in many Asian and African countries, and is reported in Australia, some parts of Europe, and America. The clinical courses of this disease in animals are peracute, acute, sub¬acute, and chronic forms. In severely infected cases, the animals are dead without premonitory clinical signs. The blood may fail to clot and can be found in the mouth, nostrils, and anus in the animals that die from anthrax. This bacterium is susceptible to many antibiotics, yet only penicillin and oxytetracycline have the most effective under field conditions. When an outbreak occurs in a defined area, it is necessary to take early steps to break the infection cycle by maintaining strict biosecurity and vaccinating uninfected animals. This disease is still a challenge to farm animal production in many countries. This review intends to give a fair knowledge of the etiology, epi¬demiology, pathogenesis, clinical presentation, diagnosis, treatment, and control of this disease.
Background and Aim: Determination of trace amounts of vitamins in multi-component feed premix is a troublesome analytical procedure. In this study, a simple and rapid high-performance liquid chromatography (HPLC) method was developed and validated for the concurrent detection and quantitation of four water-soluble vitamins such as thiamine, riboflavin, pyridoxine, and cyanocobalamin in veterinary feed premixes. Materials and Methods: The chromatographic separation of the vitamins was carried out at 35°C temperature on a reversed-phase C18 column using a gradient pump mode. Mobile phase constituents were solvent (a): 25 mM Potassium dihydrogen phosphate and 5 mM sodium hexanesulfonate in deionized water having pH-4.0 and solvent and (b) 5 mM sodium hexanesulfonate in methanol. Detection was performed with HPLC ultraviolet/visible detection set at 278 and 361 nm wavelength in two different channels. The flow rate was 1.2 mL/min and the total run time was 25 min. Results: The method was validated according to the International Conference on Harmonization and Food and Drug Administration guidelines and acceptance criteria for system suitability, precision, linearity, and recovery were met in all cases. The relative standard deviation for system suitability and precision was <2% for all vitamins. The linearity of the calibration curves was excellent (R2>0.999) at concentration of 5, 10, 15, 20, 25, and 30 μg/mL for all vitamins. The limits of detection values were 0.0125, 0.0017, 0.0064, and 0.0065 μg/mL for thiamine, riboflavin, pyridoxine, and cyanocobalamin, respectively, and the limits of quantification values were 0.0378, 0.0051, 0.0213, and 0.0198 μg/mL for thiamine, riboflavin, pyridoxine, and cyanocobalamin, respectively. The recovery percentages ranged from 88% to 115%. Conclusion: The overall parameters of the proposed method met the validation criteria and this method could be a highly desirable technique for routine analysis of water-soluble vitamins in veterinary feed premix.
Objectives: This study was designed to examine the effects of various concentrations of tris (hydroxymethyl) aminomethane (tris) and egg yolk on the quality of cryopreserved buck sperm. Materials and Methods: The collected semen samples were pooled, washed, and diluted into five different freezing extender groups, viz., extender I (tris 0% + egg yolk 0%), extender II (tris 1.41% + egg yolk 4%), extender III (tris 2.41% + egg yolk 8%), extender IV (tris 3.41% + egg yolk 16%), and extender V (tris 4.41% + egg yolk 24%). The sperm parameter of the five groups of extenders was evaluated after equilibration and cryopreservation. Results: The results showed that extenders II–V provided significantly higher semen progressive motility and total motility percentages than extender I after equilibration (p < 0.05). The higher percentages of semen progressive motility, total motility, viability, and plasma membrane integ¬rity (by both HOST under light microscopy and stain after HOST under light microscopy) were found in the sperm cryopreserved with extender IV than extender I, extender II, and extender III groups after thawing (p < 0.05). In addition, semen progressive motility, total motility, and viability were not further increased, or plasma membrane integrity (by both HOST tests) was decreased by the addition of tris and egg yolk (extender V) after cryopreservation (p < 0.05). Conclusion: In conclusion, our result indicates that the following washing, the supplementation of tris (3.41% + egg yolk 16%) on the freezing extender are suitable for improving the semen quality of buck after freezing and thawing.
Background and Aim: Low concentrations of heavy metals are toxic and pose a serious threat to human health and the environment. Therefore, regular assessments of the toxic metal content in poultry feed are crucial for evaluating feed quality and customer safety. It is difficult to determine the heavy metals in the poultry feed at the trace amount. Therefore, this study aimed to validate this method through the detection of three heavy metals, chromium (Cr), cadmium (Cd), and lead (Pb), in poultry feed samples. Materials and Methods:Graphite furnace atomic absorption spectrometry (GF-AAS) method was used to analyze the heavy metals in poultry feed according to the guidelines given by the Council Directive 333/2007/EC, Commission Decision 657/2002/EC. In this study, various parameters such as linearity check, limit of detection (LOD), limit of quantification (LOQ), recovery percentage, precision checks, repeatability, reproducibility, and uncertainty measurement were considered to validate and assess the method following international guidelines. Heavy metals, such as Pb, Cr, and Cd, were analyzed from the feed samples in the laboratory using the GF-AAS method (Model: AA-7000 Shimadzu, Japan) with high purity argon as the inert gas, and the absorbance was read at wavelengths of 283.0, 357.9, and 228.8 nm, respectively. Results:The coefficient of variation (CV%) for system suitability and precision data was <10% for all the metals (Pb, Cr, and Cd) detected in this study. The overall CV% of repeatability and reproducibility ranged from 8.70% to 8.76% and 8.65% to 9.96%, respectively. The linearity of the calibration curves was excellent (r 2 > 0.999) at various concentration levels for the three different metals. The recovery (%) was found to be 94.53, 93.97, and 101.63% for Pb, Cr, and Cd, respectively. The LOD values in feed were 0.065, 0.01, and 0.11 mg/kg, and the LOQ values were 0.22, 0.03, and 0.38 mg/kg for Cr, Cd, and Pb, respectively. The values recorded for the measurement uncertainty (%) were 11.48, 4.43, and 12.42% for Cr, Cd, and Pb, respectively. Conclusion:The results show that these study criteria or parameters have met the validated or acceptable range. Therefore, it is a reliable technique that can be used undoubtedly for the routine analysis of heavy metals in poultry feed samples across the globe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.