High voltage direct current (HVDC) grids are envisioned for large-scale grid integration of renewable energy sources. Upon realization, components from multiple vendors have to be coordinated and interoperability problems can occur. To address these problems, a multi-vendor HVDC system can benefit from a partially open control and protection system. Unwanted interactions can be investigated and solved more easily in partially open software compared to when applying black-boxed and vendorspecific software. Although a partially open approach offers these advantages, practical aspects, such as the implementation in a real station architecture, have to be addressed carefully. This paper covers this important topic, first by reviewing the required control and protection functions and second by discussing the choice for certain open and closed software parts, their implementation in physical units as well as the required communication and interfaces. The result from this discussion is a first proposal of a station architecture for a multi-vendor HVDC system using partially open control and protection. This architecture will be a helpful starting point to industry and academia working with research and harmonization on this topic as ad-hoc solutions in terms of practical aspects can be avoided.
The increasing deployment of wind power is reducing inertia in power systems. High-voltage direct current (HVDC) technology can help to improve the stability of AC areas in which a frequency response is required. Moreover, multi-terminal DC (MTDC) networks can be optimized to distribute active power to several AC areas by droop control setting schemes that adjust converter control parameters. To this end, in this paper, particle swarm optimization (PSO) is used to improve the primary frequency response in AC areas considering several grid limitations and constraints. The frequency control uses an optimization process that minimizes the frequency nadir and the settling time in the primary frequency response. Secondly, another layer is proposed for the redistribution of active power among several AC areas, if required, without reserving wind power capacity. This method takes advantage of the MTDC topology and considers the grid code limitations at the same time. Two scenarios are defined to provide grid code-compliant frequency control.
Control systems of modular multilevel converters can be partitioned into several levels. Such partitioning is becoming relevant in multi-vendor high-voltage direct-current systems where one party may deliver the converter hardware and associated control, whereas another party may deliver the systemrelated control. However, the exact control system partitioning has not been subject to research. This paper presents a method for partitioning control systems into two levels with minimum dependencies between the two levels. Furthermore, the impact of specific control designs on the partitioning and integration effort is discussed using an example. The presented method is useful for the design of multi-vendor control systems for modular multilevel converters whose partitioning otherwise would be based on engineering intuition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.