Abstract. Long-term monitoring at sites with relatively low particulate pollution could provide an opportunity to identify changes in pollutant concentration and potential effects of current air quality policies. In this study, 9-year sampling of PM10 (particles with an aerodynamic diameter below 10 µm) was performed in a rural background site in France (Observatoire Pérenne de l'Environnement or OPE) from 28 February 2012 to 22 December 2020. The positive matrix factorization (PMF) method was used to apportion sources of PM10 based on quantified chemical constituents and specific chemical tracers analysed on collected filters. Oxidative potential (OP), an emerging health metric that measures PM capability to potentially cause anti-oxidant imbalance in the lung, was also measured using two acellular assays: dithiothreitol (DTT) and ascorbic acid (AA). The sources of OP were also estimated using multiple linear regression (MLR) analysis. In terms of mass contribution, the dominant sources are secondary aerosols (nitrate- and sulfate-rich) associated with long-range transport (LRT). However, in terms of OP contributions, the main drivers are traffic, mineral dust, and biomass burning factors. There is also some OP contribution apportioned to the sulfate- and nitrate-rich sources influenced by processes and ageing during LRT that could have encouraged mixing with other anthropogenic sources. The study indicates much lower OP values than in urban areas. A substantial decrease (58 % reduction from the year 2012 to 2020) in the mass contributions from the traffic factor was found, even though this is not clearly reflected in its OP contribution. Nevertheless, the findings in this long-term study at the OPE site could indicate effectiveness of implemented emission control policies, as also seen in other long-term studies conducted in Europe, mainly for urban areas.
The CARA program has been running since 2008 by the French reference laboratory for air quality monitoring (LCSQA) and the regional monitoring networks, to gain better knowledge—at a national level—on particulate matter (PM) chemistry and its diverse origins in urban environments. It results in strong collaborations with international-level academic partners for state-of-the-art, straightforward, and robust results and methodologies within operational air quality stakeholders (and subsequently, decision makers). Here, we illustrate some of the main outputs obtained over the last decade, thanks to this program, regarding methodological aspects (both in terms of measurement techniques and data treatment procedures) as well as acquired knowledge on the predominant PM sources. Offline and online methods are used following well-suited quality assurance and quality control procedures, notably including inter-laboratory comparison exercises. Source apportionment studies are conducted using various receptor modeling approaches. Overall, the results presented herewith underline the major influences of residential wood burning (during the cold period) and road transport emissions (exhaust and non-exhaust ones, all throughout the year), as well as substantial contributions of mineral dust and primary biogenic particles (mostly during the warm period). Long-range transport phenomena, e.g., advection of secondary inorganic aerosols from the European continental sector and of Saharan dust into the French West Indies, are also discussed in this paper. Finally, we briefly address the use of stable isotope measurements (δ15N) and of various organic molecular markers for a better understanding of the origins of ammonium and of the different organic aerosol fractions, respectively.
The adverse health impact of particles and ultrafine particles (UFP) is proven, highlighting the need of measuring the particle number concentration (PNC) dominated by UFP. So far, PNC had never been measured in the Strasbourg urban area (France). The present study on particle size distribution and PNC measurements by an UFP-3031 analyzer was conducted during winter 2019 on a background and a roadside multi-instrumented sites (Black Carbon, chemical speciation, particulate matter 10 μm or less in diameter—PM10 mass). This paper shows significantly higher particle number concentrations of particles below 100 nm at the traffic site compared to the background site. The presence of a road axis thus mainly influences UFP, contrary to larger particles whose levels are more homogeneous over the agglomeration. During the measurement period, the nature of the particles (particle size contribution and chemical composition) was different between periods of high PM10 mass concentrations and periods of high PNC. High PM10 mass concentrations were associated with a high contribution of particles larger than 100 nm but they did not show specific chemical signature. On the other hand, during the periods with high PNC, the chemical composition was modified with an increase of the primary carbonaceous fraction compared to the periods with low PNC, but there was then no clear change in size distribution. Overall, this study illustrates that PM10 mass concentrations were barely representative of UFP and PNC variations, confirming that the monitoring of the latter metrics is necessary to better evaluate the particles toxicity, knowing that this toxicity also depends on the particle’s chemical composition.
Ammonia (NH3) is an unregulated atmospheric gaseous pollutant in ambient air, involved in the formation of fine particles. Ammonia is therefore a major precursor of particulate matter (PM), the health effects of which have been widely demonstrated. NH3 emissions are clearly dominated by the agricultural sector (livestock and fertilizers), but other sources may also be important and less studied, such as road traffic with the increased use of catalytic converters in vehicles. This study is based on a long-term real-time measurements campaign (December 2019–September 2021) on two urban sites: a background site and a roadside site in the same agglomeration in France. The study of historical measurements at the background site clearly demonstrated the dominance of agriculture on the ammonia concentrations. This influence was also observed at both sites during the measurement campaign. The annual and monthly averages obtained in the study were similar to previous ones, with concentrations between 1–10 µg/m3 at both sites, indicating lower levels than previous studies for the roadside site. The ammonia levels measured during the campaign at the traffic site were significantly higher than those measured at the background site, highlighting the road traffic influence on ammonia in urban area. The biomass burning influence also seemed to be observed during this long measurement campaign at the agglomeration scale. The influences of road traffic and biomass burning on ammonia concentration remain small compared to agriculture.
Abstract. Long-term monitoring at sites with relatively low particulate pollution could provide an opportunity to identify changes in pollutant concentration and potential effects of current air quality policies. In this study, a 9-year sampling of PM10 (particles with an aerodynamic diameter below 10 µm) was performed in a rural background site in France from February 28, 2012 to December 22, 2020. The Positive Matrix Factorization (PMF) method was used to apportion sources of PM10 based on quantified chemical constituents and specific chemical tracers from collected filters. Oxidative potential (OP), an emerging health-metric that measures PM capability to potentially cause anti-oxidant imbalance in the lung, was also measured using two acellular assays: dithiothreitol (DTT) and ascorbic acid (AA). The contribution of PMF-resolved sources to OP were also estimated using multiple linear regression (MLR) analysis. In terms of mass contribution, the dominant sources are secondary aerosols (nitrate- and sulphate-rich), associated with long-range transport (LRT). However, in terms of OP contributions, the main drivers are traffic, mineral dust, and biomass burning factors. There is also some OP contribution apportioned to the sulphate- and nitrate-rich sources influenced by processes and aging during LRT that could have encouraged mixing with other anthropogenic sources. The study indicates much lower OP values than in urban areas. A substantial decrease (58 % reduction from year 2012 to 2020) in the mass contributions from the traffic factor was found, however, this is not clearly reflected in its OP contribution. Nevertheless, the findings in this long-term study in the OPE site could signal effectiveness of implemented emission control policies, as also seen in other long-term studies conducted in Europe, mainly for urban areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.