In higher plants, seed size is central to many aspects in evolutionary fitness and is a crucial agricultural trait. In this study, Arabidopsis an3 (angustifolia3) mutants present with increased seed size. Target-gene analysis revealed that YDA, which encodes a mitogen-activated protein kinase kinase kinase, is a target gene of AN3. Indeed, the loss of YDA function decreases seed size. Furthermore, AN3 and YDA mutations both disrupt normal sucrose and glucose contents and cause altered seed size in an3 or yda mutants. With these results, we provide a molecular model in which soluble sugar accumulation might affect seed size regulation via the AN3-YDA gene cascade. Our findings guide the synthesis of a model that predicts the integration of soluble sugar accumulation at AN3 to control the establishment of seed size.
Anthocyanin accumulation specifically depends on sucrose (Suc) signaling. However, the molecular basis of this process remains unknown. In this study, in vitro pull-down assays identified ETHYLENE-INSENSITIVE3 (EIN3), a component of both sugar signaling or/and metabolism. This protein interacted with YDA, and the physiological relevance of this interaction was confirmed by in planta co-immunoprecipitation, yeast two-hybrid (Y2H) assay, and bimolecular fluorescence complementation. Ethylene insen-sitive3-like 1 (eil1) ein3 double-mutant seedlings, but not ein3-1 seedlings, showed anthocyanin accumulation. Furthermore, ein3-1 suppressed anthocyanin accumulation in yda-1 plants. Thus, EMB71/YDA-EIN3-EIL1 may form a sugar-mediated gene cascade integral to the regulation of anthocyanin accumulation. Moreover, the EMB71/YDA-EIN3-EIL1 gene cascade module directly targeted the promoter of Transparent Testa 8 (TT8) by direct EIN3 binding. Collectively, our data inferred a molecular model where the signaling cascade of the YDA-EIN3-TT8 appeared to target TT8 via EIN3, thereby modulating Suc signaling-mediated anthocyanin accumulation. KEYWORDS EMB71/YODA(YDA); anthocyanin biosynthesis; ETHYLENE-INSENSITIVE3 (EIN3); TT8; sugar signal or/and metabolism; ethylene signal A NTHOCYANINS are a class of flavonoids widely found in plants and play important roles in many of physiological processes, including functioning as photoprotective screens in vegetative tissue, visual attractors in pollination, antimicrobial agents, and feeding deterrents in the defense response (Winkel-Shirley 2001). Anthocyanin accumulation is stimulated via many endogenous signals, for example, sucrose (
In higher plants, seed mass is an important to evolutionary fitness. In this context, seedling establishment positively correlates with seed mass under conditions of environmental stress. Thus, seed mass constitutes an important agricultural trait. Here, we show loss-of-function of YODA (YDA), a MAPKK Kinase, and decreased seed mass, which leads to susceptibility to drought. Furthermore, we demonstrate that yda disrupts sugar metabolisms but not the gaseous plant hormone, ethylene. Our data suggest that the transcription factor EIN3 (ETHYLENE-INSENSITIVE3), integral to both sugar and ethylene metabolisms, physically interacts with YDA. Further, ein3-1 mutants exhibited increased seed mass. Genetic analysis indicated that YDA and EIN3 were integral to a sugar-mediated metabolism cascade which regulates seed mass by maternally controlling embryo size. It is well established that ethylene metabolism leads to the suppression of drought tolerance by the EIN3 mediated inhibition of CBF1, a transcription factor required for the expression genes of abiotic stress. Our findings help guide the synthesis of a model predicting how sugar/ethylene metabolisms and environmental stress are integrated at EIN3 to control both the establishment of drought tolerance and the production of seed mass. Collectively, these insights into the molecular mechanism underpinning the regulation of plant seed size may aid prospective breeding or design strategies to increase crop yield.
Light signals are perceived by multiple photoreceptors that converge to suppress the RING E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) for the regulation of stomatal development. Thus, COP1 is a point of integration between light signaling and stomatal patterning. However, how light signaling is collected into COP1 for the production and spacing of stomata is still unknown. Here, we report that the loss-of-function mutant of ANGUSTIFOLIA3 (AN3) delays asymmetric cell division, which leads to decreased stomatal index. Furthermore, overexpression of AN3 accelerates asymmetric cell division, which results in clusters of stomata. In addition, the stomatal development through AN3 regulation is mediated by light signaling. Finally, we find that an3 is a light-signaling mutant, and that AN3 protein is light regulated. Self-activation by AN3 contributes to the control of AN3 expression. Thus, AN3 is a point of collection between light signaling and stomatal patterning. Target-gene analysis indicates that AN3 is associated with COP1 promoter for the regulation of light-controlling stomatal development. Together, these components for regulating stomatal development form an AN3-COP1-E3 ubiquitin ligase complex, allowing the integration of light signaling into the production and spacing of stomata.
The infection processes of Ceratocystis fimbriata BMPZ13 (Cf BMPZ13) was elucidated on vegetative tissues of sweetpotato plants employing light and scanning electron microscopy. Vegetative tissues infected with Cf BMPZ13 by either wounding or non-wounding inoculation methods developed typical disease symptoms, establishing black rot in stems and necrosis on buds, young leaves, and stems of sprouts, in addition to wilt on leaves and shoot cuttings, typical of vascular associated diseases. The runner hyphae of Cf BMPZ13 formed from germinated conidia were able to directly penetrate the epidermal cuticle for initial infection and invade sweetpotato peltate glandular trichomes (PGT), specialized secretory structures to store and secrete metabolites. A two-step biotrophic phase was observed with non-wounding inoculation on leaves and stems, featuring both intercellular and intracellular invasive hyphae (IH), with the latter found within living cells of the leaf epidermis. Subsequent to the biotrophic phase was a necrotrophic phase displaying cell death in infected leaves and veins. Additionally, this cell death was an iron-associated ferroptosis, supporting the notion that iron is involved in the necrotrophic phase of Cf BMPZ13 infection. Significantly, we establish that C. fimbriata employs a unique infection strategy: the targeting of peltate glandular trichomes. Collectively, our findings show that C. fimbriata is a plant fungal pathogen with a hemibiotrophic infection style in sweetpotato vegetative tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.