Abstract:The paper presents a study on the surface modifications of nickel based superalloy Nimonic 263 induced by laser shock peening (LSP) process. The process was performed by Nd 3+ :Yttrium Aluminium Garnet (YAG) picosecond laser using the following parameters: pulse duration 170 ps; repetition rate 10 Hz; pulse numbers of 50, 100 and 200; and wavelength of 1064 nm (with pulse energy of 2 mJ, 10 mJ and 15 mJ) and 532 nm (with pulse energy of 25 mJ, 30 mJ and 35 mJ). The following response characteristics were analyzed: modified surface areas obtained by the laser/material interaction were observed by scanning electron microscopy; elemental composition of the modified surface was evaluated by energy-dispersive spectroscopy (EDS); and Vickers microhardness tests were performed. LSP processing at both 1064 nm and 532 nm wavelengths improved the surface structure and microhardness of a material. Surface morphology changes of the irradiated samples were determined and surface roughness was calculated. These investigations are intended to contribute to the study on the level of microstructure and mechanical properties improvements due to LSP process that operate in a picosecond regime. In particular, the effects of laser wavelength on the microstructural and mechanical changes of a material are studied in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.