The experiment have been performed using samples of welded joints of the three components aluminium alloy AlMg4,5Mn. The welding was performed with GTAW in the shielded atmosphere of Ar+0,015N2, mixture of the inert gases Ar+50%He+0,015N2 and Ar+70%He+0,015N2. After welding has been completed, the metallographic tests, the tensile test and the tests of the hardness were performed. Also, the weld metal toughness was estimated, using the instrumental Charpy impact testing system, followed by estimating the crack initiation energy, crack growth energy and the fracture mechanics parameters. The goal was to establish the effects of shielding atmosphere composition on the mechanical properties and fracture mechanics parameters of weld metal
This paper examines the possibility of using basalt-based glass ceramics for construction of structural parts of equipment in metallurgy and mining. An ultrasonic vibration method with a stationary sample pursuant to the ASTM G32 standard was used to evaluate the possibility of the glass ceramic samples application in such operating conditions. As the starting material for synthesis of samples, olivine–pyroxene basalt from the locality Vrelo–Kopaonik Mountain (Serbia) was used. In order to obtain pre-determined structure and properties of basalt-based glass ceramics, raw material preparation methods through the sample crushing, grinding, and mechanical activation processes have been examined together with sample synthesis by means of melting, casting, and thermal treatment applied for the samples concerned. The mass loss of samples in function of the cavitation time was monitored. Sample surface degradation level was quantified using the image analysis. During the test, changes in sample morphology were monitored by means of the scanning electronic microscopy method. The results showed that basalt-based glass ceramics are highly resistant to cavitation wear and can be used in similar exploitation conditions as a substitute for other metal materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.