Exogenous growth promoters have been used in US beef cattle production for over 50 yr. The environmental fate and transport of steroid growth promoters suggest potential for endocrine-disrupting effects among ecological receptors; however, the initial excretion of steroid metabolites from cattle administered growth promoters has not been well characterized. To better characterize excretion of trenbolone acetate and estrogen metabolites, steers were assigned to 1 of the following treatment groups: control, given no implant, or treatment, administered a combination implant (200 mg trenbolone acetate, 40 mg estradiol). Blood, urine, and fecal samples were collected over the course of 112 d following implantation. Samples were extracted and analyzed by liquid chromatography tandem mass spectrometry for trenbolone acetate and estrogen metabolites. In both urine and feces, 17α-trenbolone and 17α-estradiol were the predominant metabolites following implantation. Mean concentrations of 17α-trenbolone and 17α-estradiol in feces of implanted steers were 5.9 ± 0.37 ng/g and 2.7 ± 0.22 ng/g, respectively. A best-fit model is presented to predict 17α-trenbolone and 17α-estradiol excretion from steers receiving implants. The present study provides the first characterization of both trenbolone and estrogen metabolites in excreta from implanted cattle and will help provide estimates of steroid production from feedyards in the United States.
Studies of steroid growth promoters from beef cattle feedyards have previously focused on effluent or surface runoff as the primary route of transport from animal feeding operations. There is potential for steroid transport via fugitive airborne particulate matter (PM) from cattle feedyards; therefore, the objective of this study was to characterize the occurrence and concentration of steroid growth promoters in PM from feedyards. Air sampling was conducted at commercial feedyards (n = 5) across the Southern Great Plains from 2010 to 2012. Total suspended particulates (TSP), PM10, and PM2.5 were collected for particle size analysis and steroid growth promoter analysis. Particle size distributions were generated from TSP samples only, while steroid analysis was conducted on extracts of PM samples using liquid chromatography mass spectrometry. Of seven targeted steroids, 17α-estradiol and estrone were the most commonly detected, identified in over 94% of samples at median concentrations of 20.6 and 10.8 ng/g, respectively. Melengestrol acetate and 17α-trenbolone were detected in 31% and 39% of all PM samples at median concentrations of 1.3 and 1.9 ng/g, respectively. Results demonstrate PM is a viable route of steroid transportation and may be a significant contributor to environmental steroid hormone loading from cattle feedyards.
Alum [Al(SO4) ·14HO] addition to poultry litter has been shown to reduce ammonia (NH) concentrations in poultry houses; however, its effects on greenhouse gas (GHG; NO, CH, and CO) emissions is unknown. The objectives of this study were to determine the effects of alum additions on (i) in-house NH and GHG concentrations, (ii) NH and GHG emissions, and (iii) litter chemical properties. Two identical broiler houses located in northwest Arkansas were used for this study: one house was a control and the other was treated with alum between each flock of birds. Ventilation rates were coupled with in-house NH and GHG measurements to determine emission rates. Overall, alum additions significantly reduced the daily average in-house NH concentration by 42% (8.9 vs. 15.4 μL L), and the overall NH emission rate was reduced by 47% (7.2 vs. 13.4 kg d house). The average cumulative NH emission for the three flocks was 330 kg house flock for the alum-treated house and 617 kg house flock for the control. Concentrations and emissions of nitrous oxide (NO) and methane (CH) from the alum-treated house were not significantly different than the untreated house. However, carbon dioxide (CO) emissions were significantly higher from the untreated house than the alum-treated house. Alum also significantly increased litter N content and reduced the C/N ratio. These results indicate that the addition of alum to poultry litter is not only an effective management practice for reducing in-house NH concentrations and emissions but also significantly reduces CO emissions from poultry facilities.
Cottonseed is an economical source of protein and is commonly used in balancing livestock rations; however, its use is typically limited by protein, fat, gossypol, and aflatoxin contents. Whole cottonseed was extruded to determine if the temperature and dwell time (multiple stages of processing) associated with the process affected aflatoxin levels. The extrusion temperature study showed that aflatoxin levels were reduced by an additional 33% when the cottonseed was extruded at 160 degrees C as compared to 104 degrees C. Furthermore, the multiple-pass extrusion study indicated that aflatoxin levels were reduced by an additional 55% when the cottonseed was extruded four times as compared to one time. To estimate the aflatoxin reductions due to extrusion temperature and dwell time, the least mean fits obtained for the individual studies were combined. Total estimated reductions of 55% (three stages of processing at 104 degrees C), 50% (two stages of processing at 132 degrees C), and 47% (one stage of processing at 160 degrees C) were obtained from the combined equations. If the extreme conditions (four stages of processing at 160 degrees C) of the evaluation studies are applied to the combined temperature and processing equation, the resulting aflatoxin reduction would be 76%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.