This study investigated the neurobiological basis of attentional control dysfunction in neurodegenerative disease by determining the effect of regional brain atrophy on Flanker task performance of neurodegenerative patients. We hypothesized that atrophy in DLPFC and ACC would be significantly associated with decreased attentional control performance on the Flanker task. We used voxel-based morphometry (VBM) to measure the relationship between MRI measures of regional grey matter atrophy and performance on a version of the Flanker task, measured by accuracy and response time. Sixty-five subjects participated, including patients with frontotemporal dementia, Alzheimer's disease, mild cognitive impairment, non-fluent progressive aphasia, corticobasal degeneration, progressive supranuclear palsy, semantic dementia, and healthy controls. Accuracy measures of attentional control and response time measures of attentional control were associated with two different patterns of regional atrophy across subjects. First, there was an association between left hemisphere DLPFC and ACC atrophy and poorer attentional control accuracy. Second, right hemisphere temporal-parietal junction (TPJ) and ventrolateral prefrontal cortex (VLPFC) and DLPFC atrophy were associated with slower response times during attentional control on accurate trials, which may reflect emergent involvement due to deficits in the DLPFC-ACC network.
Abstract. We present spectral domain polarization-sensitive optical coherence tomography (SD PS-OCT) imaging of peripheral nerves. Structural and polarization-sensitive OCT imaging of uninjured rat sciatic nerves was evaluated both qualitatively and quantitatively. OCT and its functional extension, PS-OCT, were used to image sciatic nerve structure with clear delineation of the nerve boundaries to muscle and adipose tissues. A long-known optical effect, bands of Fontana, was also observed. Postprocessing analysis of these images provided significant quantitative information, such as epineurium thickness, estimates of extinction coefficient and birefringence of nerve and muscle tissue, frequency of bands of Fontana at different stretch levels of nerve, and change in average birefringence of nerve under stretched condition. We demonstrate that PS-OCT combined with regular-intensity OCT (compared with OCT alone) allows for a clearer determination of the inner and outer boundaries of the epineurium and distinction of nerve and muscle based on their birefringence pattern. PS-OCT measurements on normal nerves show that the technique is promising for studies on peripheral nerve injury.
We present a GPU accelerated multi-functional spectral domain optical coherence tomography system at 1300nm. The system is capable of real-time processing and display of every intensity image, comprised of 512 pixels by 2048 A-lines acquired at 20 frames per second. The update rate for all four images with size of 512 pixels by 2048 A-lines simultaneously (intensity, phase retardation, flow and en face view) is approximately 10 frames per second. Additionally, we report for the first time the characterization of phase retardation and diattenuation by a sample comprised of a stacked set of polarizing film and wave plate. The calculated optic axis orientation, phase retardation and diattenuation match well with expected values. The speed of each facet of the multi-functional OCT CPU-GPU hybrid acquisition system, intensity, phase retardation, and flow, were separately demonstrated by imaging a horseshoe crab lateral compound eye, a non-uniformly heated chicken muscle, and a microfluidic device. A mouse brain with thin skull preparation was imaged in vivo and demonstrated the capability of the system for live multi-functional OCT visualization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.