Galectin (Gal) is a member of a family of β-galactoside-binding lectin. The members of this family play important roles in the recognition of carbohydrate ligands and in various other biological processes. In this study, we identified the gene encoding Gal-9 in Pagrus major (PmGal-9) and analyzed its expression in various tissues after pathogen challenge. Alignment analysis revealed that the two galactose-binding lectin domains of the deduced protein were highly conserved among all the teleosts. Phylogenetic analysis revealed that PmGal-9 is most closely related to the Gal-9 gene of gilthead sea bream. PmGal-9 was ubiquitously expressed in all tissues analyzed but was predominantly expressed in the spleen, head kidney, and intestine. After challenges with major microbial pathogens (Edwardsiella piscicida, Streptococcus iniae, or red sea bream iridovirus) of red sea bream, PmGal-9 mRNA expression was significantly regulated in most immune-related tissues. These results suggested that PmGal-9 not only plays an important role in the immune system of red sea bream but is also a possible inflammatory marker for pathogenic diseases.
Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus that causes high mortality in cultured flounder. Naturally occurring VHSV strains vary greatly in virulence. Until now, little has been known about genetic alterations that affect the virulence of VHSV in flounder. We recently reported the full-genome sequences of 18 VHSV strains. In this study, we determined the virulence of these 18 VHSV strains in flounder and then the assessed relationships between differences in the amino acid sequences of the 18 VHSV strains and their virulence to flounder. We identified one amino acid substitution in the phosphoprotein (P) (Pro55-to-Leu substitution in the P protein; PP55L) that is specific to highly virulent strains. This PP55L substitution was maintained stably after 30 cell passages. To investigate the effects of the PP55L substitution on VHSV virulence in flounder, we generated a recombinant VHSV carrying PP55L (rVHSV-P) from rVHSV carrying P55 in the P protein (rVHSV-wild). The rVHSV-P produced high level of viral RNA in cells and showed increased growth in cultured cells and virulence in flounder compared to the rVHSV-wild. In addition, rVHSV-P significantly inhibited the induction of the IFN1 gene in both cells and fish at 6 h post-infection. An RNA-seq analysis confirmed that rVHSV-P infection blocked the induction of several IFN-related genes in virus-infected cells at 6 h post-infection compared to rVHSV-wild. Ectopic expression of PP55L protein resulted in a decrease in IFN induction and an increase in viral RNA synthesis in rVHSV-wild-infected cells. Taken together, our results are the first to identify that the P55L substitution in the P protein enhances VHSV virulence in flounder. The data from this study add to the knowledge of VHSV virulence in flounder and could benefit VHSV surveillance efforts and the generation of a VHSV vaccine.
Secretory carrier membrane proteins (SCAMPs) are widely distributed integral membrane proteins implicated in membrane trafficking. Secretory carrier membrane protein 5 (SCAMP5) is expected to be involved in regulation of the immune response because it is expressed in a variety of immune tissues and promotes the secretion of cytokines in monocytes and macrophages. In this study, we performed an analysis of the molecular characteristics and phylogenetic of the SCAMP5 gene identified in
Pagrus major
(PmSCAMP5). In addition, we analysed PmSCAMP5 gene expression levels in the tissues of red sea bream infected with various pathogens [
Edwardsiella piscicida
(
E. piscicida
),
Streptococcus iniae
(
S. iniae
) and Red sea bream iridovirus (RSIV)], and we analysed PmSCAMP5 gene expression levels in the tissues of healthy red sea bream. This study was carried out to provide basic data on the non-specific immune system of the red sea bream.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.