Our expanding ability to handle the "literally invisible" building blocks of our world has started to provoke a seismic shift on the technology, environment and health sectors of our society. During the last two decades, it has become increasingly evident that the "nano-sized" subunits composing many materials—living, natural and synthetic—are becoming more and more accessible for predefined manipulations at the nanosize scale. The use of equally nanoscale sized or functionalised tools may, therefore, grant us unprecedented prospects to achieve many therapeutic aims. In the past decade it became clear that nano-scale surface topography significantly influences cell behaviour and may, potentially, be utilised as a powerful tool to enhance the bioactivity and/ or integration of implanted devices. In this review, we briefly outline the state of the art and some of the current approaches and concepts for the future utilisation of nanotechnology to create biomimetic implantable medical devices and scaffolds for in vivo and in vitro tissue engineering,with a focus on bone. Based on current knowledge it must be concluded that not the materials and surfaces themselves but the systematic biological evaluation of these new material concepts represent the bottleneck for new biomedical product development based on nanotechnological principles.
Cell shape and regulation of biological processes such as proliferation and differentiation are to a large degree connected. Investigation of the possible relationship between cell shape and function is therefore important for developing new material concepts for medical applications as well as developing novel cell based sensors. Cell spreading requires a firm contact with the underlying substrate, with focal contacts (FC) being the primary sites of adhesion. They consist of a large number of clustered transmembrane proteins (integrins). FC integrins connect the cell cytoskeleton with the cell substratum. It has been demonstrated that cell spreading increases osteoblast differentiation in pre-osteoblastic progenitors. The gradual process of osteogenesis can be followed by different proteins being expressed at various time points, comprising early (e.g., bone-specific alkaline phosphatase (bALP)) and late genes (e.g., osteocalcin (OC)). In the present study we have used immunohistochemistry and RT-PCR to determine osteogenic differentiation of human bone cells (HBC). For online monitoring, fluorescently-tagged actin and vinculin were used for transfection of HBCs. Transfection of HBCs with an OC promoter gene construct allowed us to online monitor the gradual process of osteogenesis. We found distinct changes in cell architecture upon osteogenic differentiation thus providing evidence for the connection between cell shape and functional state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.