Valacyclovir (VACV) is used increasingly to treat herpes zoster, although neuropsychiatric symptoms [VACV neurotoxicity (VAN) or acyclovir neurotoxicity], may accompany use of this drug. To promote awareness of this rare condition, we describe here two clinical cases of VAN we previously reported and review 20 cases from the literature. In all cases, chronic or acute renal failure preceded VAN. The symptoms of VAN varied, but disturbances of consciousness and hallucination occurred most commonly. When acute renal failure was due to the drug, recovery from both the disturbance of consciousness and renal failure followed within several days after discontinuation of VACV. Early recognition and diagnosis will ensure effective treatment of VAN.
Sirtuins, NAD-dependent protein deacetylases, play important roles in cellular functions such as metabolism and differentiation. Whether sirtuins function in tumorigenesis is still controversial, but sirtuins are aberrantly expressed in tumors, which may keep cancerous cells undifferentiated. Therefore, we investigated whether the inhibition of sirtuin family proteins induces cellular differentiation in leukemic cells. The sirtuin inhibitors tenovin-6 and BML-266 induce granulocytic differentiation in the acute promyelocytic leukemia (APL) cell line NB4. This differentiation is likely caused by an inhibition of SIRT2 deacetylase activity, judging from the accumulation of acetylated α-tubulin, a major SIRT2 substrate. Unlike the clinically used differentiation inducer all-trans retinoic acid, tenovin-6 shows limited effects on promyelocytic leukemia–retinoic acid receptor α (PML-RAR-α) stability and promyelocytic leukemia nuclear body formation in NB4 cells, suggesting that tenovin-6 does not directly target PML-RAR-α activity. In agreement with this, tenovin-6 induces cellular differentiation in the non-APL cell line HL-60, where PML-RAR-α does not exist. Knocking down SIRT2 by shRNA induces granulocytic differentiation in NB4 cells, which demonstrates that the inhibition of SIRT2 activity is sufficient to induce cell differentiation in NB4 cells. The overexpression of SIRT2 in NB4 cells decreases the level of granulocytic differentiation induced by tenovin-6, which indicates that tenovin-6 induces granulocytic differentiation by inhibiting SIRT2 activity. Taken together, our data suggest that targeting SIRT2 is a viable strategy to induce leukemic cell differentiation.
JAK2V617F, a gain-of-function mutation in the tyrosine kinase JAK2, is frequently detected in classical myeloproliferative neoplasms (MPNs). In the present study, we determined the JAK2V617F allele burden in Japanese MPN patients using alternately binding probe competitive-polymerase chain reaction, a highly quantitative method recently developed by our group. Although we observed strong similarities in terms of epidemiological parameters associated with the JAK2V617F allele burden between our cohort and others, we found a higher JAK2V617F allele burden in Japanese polycythemia vera (PV) patients and lower frequencies of thrombosis in Japanese MPN patients compared with previous reports. In addition, despite the presence of high red blood cell counts, some patients bearing the JAK2V617F mutation were not diagnosed as PV, as their hemoglobin values were lower than the WHO PV criterion. In these patients, the JAK2V617F allele burden was strikingly similar to that in PV patients fulfilling the 2008 WHO criteria, suggesting that these patients can be classified as PV. Although isotopic measurement of red cell mass (RCM) is required for definitive diagnosis of PV, our data suggest that precise measurement of the JAK2V617F allele burden may improve the diagnosis of PV when RCM has not been determined.
Nasal natural killer (NK)-cell lymphoma was resistant to various antitumor agents. Although high expression of p-glycoprotein has been reported, other molecular mechanism of the chemo-resistance is largely unknown. Activation of STAT3 and expression of major apoptosis-related proteins Bcl-2, Bcl-x, and Mcl-1 were analyzed by immunohistochemistry. Effects of STAT3 inhibitor AG490 on NK-YS cell line were analyzed by Western blotting and flow cytometric apoptosis assay. STAT3 was activated in six of the nine nasal NK-cell lymphomas (67%). In contrast, STAT3 activation was detected in 35% of diffuse large B-cell lymphoma (DLBCL) and in 10% of follicular lymphoma (FL). Frequent activation of STAT3 was significantly correlated with Mcl-1 expression in nasal NK-cell lymphoma, i.e., Mcl-1 was positive in five of six STAT3-active cases and negative in all three STAT3-inactive ones. In DLBCL, not only six out of seven STAT3-active cases (86%) but also eight out of thirteen STAT3-inactive cases (62%) were positive for Mcl-1 expression. Latent membrane protein-1 was positive in four nasal NK-cell lymphomas, among which three cases showed intermediate STAT3 activation. Inhibition of STAT3 activation by JAK inhibitor AG490 decreased Mcl-1 expression and induced apoptosis in STAT3-active NK-YS cells. Serum starvation rather increased the Mcl-1 level in NK-YS cells, and this effect was also canceled by AG490. These results suggest that activation of STAT3-Mcl-1 axis may play a role in the chemotherapy resistance of nasal NK-cell lymphoma. The pathway may be one of the future therapeutic targets of this intractable disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.