Epilepsy is a relatively complicated neurological disorder that results in seizures. The use of resveratrol in treating seizures has been reported in recent studies. However, the low bioavailability of resveratrol and the difficulty of reaching the targeted location in the brain reduce its efficacy considerably. The side effects due to the higher concentration of drugs are another matter of concern. The purpose of the present study is to enhance the antiepileptic potential of resveratrol by delivering it to the brain's targeted location by encapsulating it in glutathione-coated collagen nanoparticles. The collagen nanoparticles increase the bioavailability of resveratrol, while the transport of resveratrol to its target location in the brain is facilitated by glutathione. By encapsulating resveratrol in glutathione-coated collagen nanoparticles, the concentration also substantially decreases. Resveratrol encapsulated in synthesized nanoparticles is referred to as nanoresveratrol. In the present study, nanoresveratrol effectiveness was studied through PTZ-induced seizures (PTZ-IS) and the increasing current electroshock (ICES) test. The efficacy of nanoresveratrol was further established using biochemical analysis, histopathological examinations, ELISA and real-time-PCR tests, and immunohistochemistry examination of the hippocampus of mice. Hence, this study is unique in the sense that it synthesized nanoresveratrol by using glutathione-coated collagen nanoparticles, followed by its application to treating seizures. On the basis of the study results, nanoresveratrol was found to be effective in preventing cognitive impairment in the mice and controlling epilepsy seizures to a greater extent than resveratrol. The proposed nanoformulation also reduces the concentration of resveratrol considerably. The present study results show that even 0.4 mg/kg of nanoresveratrol outperforms 40 mg/kg of resveratrol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.