Pot experiments were conducted to evaluate the damaging effects of salinity on Sesbania sesban plants in the presence and absence of arbuscular mycorrhizal fungi (AMF). The selected morphological, physiological and biochemical parameters of S. sesban were measured. Salinity reduced growth and chlorophyll content drastically while as AMF inoculated plants improved growth. A decrease in the number of nodules, nodule weight and nitrogenase activity was also evident due to salinity stress causing reduction in nitrogen fixation and assimilation potential. AMF inoculation increased these parameters and also ameliorated the salinity stress to some extent. Antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) as well as non enzymatic antioxidants (ascorbic acid and glutathione) also exhibited great variation with salinity treatment. Salinity caused great alterations in the endogenous levels of growth hormones with abscisic acid showing increment. AMF inoculated plants maintained higher levels of growth hormones and also allayed the negative impact of salinity.
Plants are a treasure trove of several important phytochemicals that are endowed with therapeutic and medicinal properties. Ribes rubrum L. (red currants) are seasonal berries that are widely consumed for their nutritional value and are known for their health benefits. Red currants are a rich source of secondary metabolites such as polyphenols, tocopherols, phenolic acids, ascorbic acid, and flavonoids. In this study, sunlight-mediated synthesis of silver nanoparticles (AgNPs) was successfully accomplished within 9 min after adding the silver nitrate solution to the aqueous extract of red currant. The synthesised AgNPs were characterised with UV–Vis, transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared spectrum (FTIR), and energy-dispersive X-ray spectrum (EDX). The efficacy of aqueous extracts of red currants and AgNPs in controlling the growth of some pathogenic fungi and bacteria was also investigated. The UV–visible (UV–Vis) spectrum displayed an absorption peak at 435 nm, which corresponded to the surface plasmon band. The strong silver signal on the EDX spectrum at 3 keV, authenticated the formation of AgNPs. The several peaks on the FTIR spectrum of the aqueous extract of red currant and the nanoparticles indicated the presence of some important functional groups such as amines, carbonyl compounds, and phenols that are vital in facilitating the process of capping and bioreduction, besides conferring stability to nanoparticles. The TEM microphotographs showed that the nanoparticles were well dispersed, roughly spherical, and the size of the nanoparticles ranged from 8 to 59 nm. The red currant silver nanoparticles were highly potent in inhibiting the growth and proliferation of some fungal and bacterial test isolates, especially Alternaria alternata, Colletotrichum musae, and Trichoderma harzianum. Based on the robust antifungal and antibacterial activity demonstrated in this study, red currant nanoparticles can be investigated as potential replacements for synthetic fungicides and antibiotics.
Drought stress restricts the growth of okra (Abelmoschus esculentus L) by disrupting its biochemical and physiological functions. The current study was conducted to evaluate the role of selenium (0, 1, 2, and 3 mg Se L−1 as a foliar application) in improving okra tolerance to drought (control (100% field capacity-FC), mild stress (70% FC), and severe stress (35% FC)) imposed 30 days after sowing (DAS). Drought (severe) markedly decreased chlorophyll (32.21%) and carotenoid (39.6%) contents but increased anthocyanin (40%), proline (46.8%), peroxidase (POD by 12.5%), ascorbate peroxidase (APX by 11.9%), and catalase (CAT by 14%) activities. Overall, Se application significantly alleviated drought stress-related biochemical disturbances in okra. Mainly, 3 mg Se L−1 significantly increased chlorophyll (21%) as well as anthocyanin (15.14%), proline (18.16%), and antioxidant activities both under drought and control conditions. Selenium played a beneficial role in reducing damage caused by oxidative stress, enhancing chlorophyll and antioxidants contents, and improved plant tolerance to drought stress. Therefore, crops including okra especially, must be supplemented with 3 mg L−1 foliar Se for obtaining optimum yield in arid and semiarid drought-affected areas.
Silver nanoparticles (AgNPs) are widely used for medical applications particularly as antimicrobial agents against multidrug-resistant microbial strains. Some plants stimulate the reduction of Ag ions to AgNPs. In this study, we prepared AgNPs via the green synthesis approach using fenugreek leaves grown in Saudi Arabia. Furthermore, we characterized these AgNPs and evaluated their antimicrobial activities against pathogenic yeast, bacteria, and fungi. The ultraviolet-visible peak at 380 nm confirmed the biosynthesis of NPs. Transmission electron microscopy analyses revealed particle size in the range of 9–57 nm with a spherical shape. Dynamic light scattering results confirm slight aggregation as the average particle size was shown as 68.71 nm and a polydispersity index of 0.083. The energy-dispersive X-ray spectroscopy results showed an intense peak at 3 keV, indicating the presence of elemental AgNPs. The synthesized AgNPs efficiently inhibit the growth of both Gram-positive and Gram-negative bacteria; however, varying degree of inhibition was shown toward fungi. The potent antimicrobial ability of the synthesized NPs can be attributed to their small size and round shape. Among all test organisms, the growth of Candida albicans and Helminthosporium sativum was remarkably affected by AgNPs treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.