Enlarging the molecular size of zinc phthalocyanine (Pc) dyes three dimensionally with 2,6-diphenylphenoxy substituents significantly reduced the aggregation of the dyes on a TiO(2) surface. As a result, the incident photon-to-current conversion efficiency was improved not only in the Q band but over the whole absorption range, achieving 4.6% energy conversion efficiency under one-sun conditions. Electron lifetime measurements indicated that these Pc dyes do not enhance charge recombination, encouraging further development of Pc.
Light-harvesting antenna core (LH1-RC) complexes isolated from Rhodoseudomonas palustris were self-assembled on a gold electrode modified with self-assembled monolayers (SAMs) of the alkanethiols NH2(CH2)nSH, n = 2, 6, 8, 11; HOOC(CH2)7SH; and CH3(CH2)7SH, respectively. Adsorption of the LH1-RC complexes on the SAMs depended on the terminating group of the alkanethiols, where the adsoption increased in the following order for the terminating groups: amino groups > carboxylic acid groups > methyl groups. Further, the adsorption on a gold electrode modified with SAMs of NH2(CH2)nSH, n = 2, 6, 8, 11, depended on the methylene chain length, where the adsorption increased with increasing the methylene chain length. The presence of the well-known light-harvesting and reaction center peaks of the near infrared (NIR) absorption spectra of the LH1-RC complexes indicated that these complexes were only fully stable on the SAM gold electrodes modified with the amino group. In the case of modification with the carboxyl group, the complexes were partially stable, while in the presence of the terminal methyl group the complexes were extensively denatured. An efficient photocurrent response of these complexes on the SAMs of NH2(CH2)nSH, n = 2, 6, 8, 11, was observed upon illumination at 880 nm. The photocurrent depended on the methylene chain length (n), where the maximum photocurrent response was observed at n = 6, which corresponds to a distance between the amino terminal group in NH2(CH2)6SH and the gold surface of 1.0 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.