The transition to solid-state Li-ion batteries will enable progress toward energy densities of 1000 W·hour/liter and beyond. Composites of a mesoporous oxide matrix filled with nonvolatile ionic liquid electrolyte fillers have been explored as a solid electrolyte option. However, the simple confinement of electrolyte solutions inside nanometersized pores leads to lower ion conductivity as viscosity increases. Here, we demonstrate that the Li-ion conductivity of nanocomposites consisting of a mesoporous silica monolith with an ionic liquid electrolyte filler can be several times higher than that of the pure ionic liquid electrolyte through the introduction of an interfacial ice layer. Strong adsorption and ordering of the ionic liquid molecules render them immobile and solid-like as for the interfacial ice layer itself. The dipole over the adsorbate mesophase layer results in solvation of the Li + ions for enhanced conduction. The demonstrated principle of ion conduction enhancement can be applied to different ion systems. Mees, P. M. Vereecken, Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler. Sci. Adv. 6, eaav3400 (2020).
A TeOX-based inorganic photoresist was developed for mastering utilizing heat-mode recording. We discovered that the novel organic thermal isolation film markedly improved the patterning resolution of phase change mastering. We demonstrated Blu-ray Disc read only memory (ROM) mastering with a blue laser diode, using the TeOX-based photoresist and the thermal isolation film. The jitter values of a replicated disc were less than 6% at the full range of the disc. It was also proven that the mastering system is capable of recording 80 nm L/S. In addition, the mechanism of development was clarified.
The excellent performance of a 100-GB-capacity write-once disk was demonstrated. The disk has quadruple recording layers, i.e., Layer 3, 2, 1, and 0 (from the laser-incident side of the disk) based on the 4Â Blu-ray disc (BD) format. Each layer is provided with a phase-change type memory film of Te-O-Pd, whose thickness was 20 nm for Layer 0, and only 6 nm for Layers 1, 2, and 3 in order to obtain high transmissivity. Additionally, for Layers 2 and 3, a metallic reflection layer was not needed and an AlN film with high thermal conductivity was formed next to each recording film. The AlN film suppressed the heat-induced damage of thin recording films. Consequently, the high transmissivities of 64% (Layer 1), 75% (Layer 2), and 81% (Layer 3) were achieved so that a quadruple layer disk with high quality was realized. The experimental disk showed tolerance to a wide range of writing speeds from 1Â (36 Mbps) to 4Â (144 Mbps). Good jitter values for each layer within an available maximum laser power of 27 mW on the disk were demonstrated. The acceleration test for lifetime using the Arrhenius plots showed that this write-once disk has an estimated lifetime of more than 100 years at 30 C and 85% relative humidity (RH).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.