We present in this paper an analytical model of the current -voltage (I-V) characteristics for submicron GaAs MESFET transistors. This model takes account the analysis of the charge distribution in the active region and incorporate a field depended electron mobility, velocity saturation and charge build-up in the channel.we propose In this framework an algorithm of simulation based on mathematical expressions obtained previously. The results obtained of the model are discussed and compared with those of the experimental data reading obtained from the literature [1], The agreement has been shown to be good.
We present in this paper an analytical model of the current-voltage (I-V) characteristics for submicron GaAs MESFET transistors. This model takes into account the analysis of the charge distribution in the active region and incorporate a field depended electron mobility, velocity saturation and charge build-up in the channel. We propose in this frame work an algorithm of simulation based on mathematical expressions obtained previously. We propose a new mobility model describing the electric field-dependent. The predictions of the simulator are compared with the experimental data [1] and have been shown to be good.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.