Mimosa pudica seed mucilage (MPM) is composed of glucuronoxylan, which is a swellable, pH-responsive and non-toxic biomaterial. Herein, we aimed to extract MPM from M. pudica seeds (MP seeds) to ascertain optimization of extraction conditions to get highest yield by response surface methodology, via Box-Behnken design (RSM-BBD). MPM was extracted from MP seeds by a hot water extraction method. The effects of four different parameters on the extraction yield of MPM were evaluated: pH of the extraction medium (1–10), seed/water contact time (1–12 h), the temperature of extraction medium (30–90 °C), and seed/water ratio (1:5–1:35 w/v). The maximum yield of MPM obtained by Design-Expert software was 10.66% (10.66 g/100 g) at pH 7, seed/water contact time of 6 h, extraction temperature of 50 °C, and seed/water ratio of 1:20 w/v. The p values of ANOVA were found to be less than 0.0001, which indicated that the extraction yield of MPM was significantly affected by all the study parameters. The results revealed that pH and extraction temperature were the most significant factors affecting the yield of MPM. MPM in compressed tablet form showed pH-responsive on–off switching behavior at pH 7.4 and 1.2 in a reversible manner. MPM in compressed tablet form sustained the release of itopride for 16 h following a super case-II transport mechanism and zero-order release kinetics.
Herein, we optimized eco-friendly extraction parameters to get the maximum yield of a novel polysaccharide-based mucilage (SSH) from seeds of Salvia spinosa. The dependency of the extraction yield of SSH on the pH of the extraction medium (pH 6-8), extraction temperature (25-75 °C), seed/water ratio (1:10-1:40 w/v), and seed–water contact time (1-4 h) was evaluated using response surface methodology–Box Behnken design (RSM–BBD). A second-order polynomial equation provided the best fit to the studied response with p < 0.0001. The optimum conditions to achieve the maximum yield of SSH (7.35%) were at pH 7, extraction temperature of 50 °C, seed/water ratio of 1:25 w/v, and seed–water contact time of 2.5 h. Scanning electron microscopic analysis of SSH revealed its superporous nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.