Background: Under-eye dark circles are a common condition observed in dermatology practice. Mesenchymal stromal cell-derived conditioned medium (MSC-CM) contains an array of growth factors and cytokines reported to promote periorbital rejuvenation and may be useful in removing the dark circle around the eyes.
Aims:The aim of the present study was to evaluate the safety and efficacy of developed bioactive formulation containing mesenchymal stromal cell-derived conditioned medium in reducing the under-eye dark circles.Patients/Methods: We tested the safety profile of MSC-CM along with antioxidants, in vitro using human melanocytes cultures. The bioactive formulation containing MSC-CM was developed and tested for physicochemical parameters. The dermatological safety was evaluated by primary irritant patch-test under complete occlusion on healthy human subjects. To elucidate its safety and efficacy, monocentric, openlabel, single-arm study was carried out in 20 Indian female subjects for the duration of 12 weeks. Parameters such as eye puffiness, radiance, skin smoothness, even skin tone, periorbital fine lines and wrinkles, crow's feet, whitening, pigmentation, skin tightening, and refreshing/soothing effect were used to investigate the rejuvenating property of the bioactive formulation.Results: Mesenchymal stromal cell-derived conditioned medium along with antioxidants decreased the melanin content compared to the CM alone in the melanocyte cultures. Besides, the bioactive formulation was safe and emerged as a non-irritant product. Improvement in the majority of the clinical parameters assessed through efficacy study was observed within 4 weeks of topical application of the formulation twice daily, and showed continued improvement for 12 weeks as evaluated by the dermatologists as well as self-assessment by the subjects.
Wound healing is a complex process affected by several factors. In the present work, novel biocompatible PLGA-curcumin microparticle-embedded chitosan scaffold was fabricated for wound-healing application. Process variables involved in the preparation of microparticles were optimized using design of experiment. Scanning electron microscopy (SEM) confirmed the porous nature of scaffold with embedded microparticles. A maximum release of 14% of the encapsulated curcumin was observed at 12th hour. Modified tube dilution method showed that scaffold significantly (p < 0.05) reduced multiplication of Staphylococcus aureus. More than 50% of the excised wound in rats healed in 4 days with an epithilization period of 18 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.