A model based on a system of balance equations for localised and continuum states is developed to calculate the current − voltage (I − V) and power characteristics of quantum-cascade lasers (QCLs) operating in the terahertz (THz) range. A method for modifying the eigenbasis of the Schrödinger equation by reducing the dipole moments of tunnel-coupled states is proposed to take into account the effect of dephasing on the carrier transport. The calculated and experimental data on the current − voltage characteristics and the dependence of the integrated radiation intensity on current for the THz QCLs lasing at 2.3 THz are compared. The calculated and measured values of the threshold current, lasing current range, and maximum operating temperature T
max are found to be in good agreement. It is shown that T
max can be increased by 25 % by reducing the thickness of the top contact layer n
+-GaAs of the laser structure under study from 800 to 100 nm.
We investigate the light-current-voltage characteristics and emission spectra of 2.3 THz quantum cascade laser operating in the negative differential resistance (NDR) region. It was shown that the formation of electric field domains (EFDs) leads to a large number of discontinuities on the current-voltage and the total optical power on current characteristics. Measurements of emission spectra at different current (before the NDR region and in the NDR region) shows that the formation of EFDs results in decrease of the output intensity, but does not influence on Fabry-Perot multi-mode structure of THz QCL. The developed theoretical model predicts the formation of EFDs in the NDR region and qualitatively explain the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.