SummaryIn this paper, a digital sinusoidal pulse width modulation (DSPWM) multilevel technique of 27-levels based on field programmable gate array (FPGA) is introduced, as an alternative to control of the direct current/alternating current multilevel power converters. The implementation of this technique with an FPGA XC3S500E model is achieved in the Xilinx Spartan-3E FPGA platforms. An experimental prototype is implemented by 3-cascaded H-bridges controlled by the DSPWM multilevel technique, generating high efficiency, low cost, and lower harmonic content. The efficiency of the DSPWM multilevel technique using R, RL, RC, and RLC loads connected to the power network is verified.
In this paper, the active front-end (AFE) converter topology for the total harmonic distortion (THD) reduction in a wind energy system (WES) is used. A higher THD results in serious pulsations in the wind turbine (WT) output power and several power losses at the WES. The AFE converter topology improves the capability, efficiency, and reliability in the energy conversion devices; by modifying a conventional back-to-back converter, from using a single voltage source converter (VSC) to use pVSC connected in parallel, the AFE converter is generated. The THD reduction is achieved by applying a different phase shift angle at the carrier of digital sinusoidal pulse width modulation (DSPWM) switching signals of each VSC. To verify the functionality of the proposed methodology, the WES simulation in Matlab-Simulink® (Matlab r2015b, Mathworks, Natick, MA, USA) is analyzed, and the experimental laboratory tests using the concept of rapid control prototyping (RCP) and the real-time simulator Opal-RT Technologies (Montreal, QC, Canada) is achieved. The obtained results show a type-4 WT with a total output power of 6 MVA, generating a THD reduction up to 5.5 times of the total WES current output by Fourier series expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.