Advanced analytical techniques are gaining popularity in addressing complex classification type decision problems in many fields including healthcare and medicine. In this exemplary study, using digitized signal data, we developed predictive models employing three machine learning methods to diagnose an asthma patient based solely on the sounds acquired from the chest of the patient in a clinical laboratory. Although, the performances varied slightly, ensemble models (i.e., Random Forest and AdaBoost combined with Random Forest) achieved about 90% accuracy on predicting asthma patients, compared to artificial neural networks models that achieved about 80% predictive accuracy. Our results show that noninvasive, computerized lung sound analysis that rely on low-cost microphones and an embedded real-time microprocessor system would help physicians to make faster and better diagnostic decisions, especially in situations where x-ray and CT-scans are not reachable or not available. This study is a testament to the improving capabilities of analytic techniques in support of better decision making, especially in situations constraint by limited resources.
In recent decades, reinforcement learning (RL) has been widely used in different research fields ranging from psychology to computer science. The unfeasibility of sampling all possibilities for continuous-state problems and the absence of an explicit teacher make RL algorithms preferable for supervised learning in the machine learning area, as the optimal control problem has become a popular subject of research. In this study, a system is proposed to solve mobile robot navigation by opting for the most popular two RL algorithms, Sarsa(λ) and Q(λ). The proposed system, developed in MATLAB, uses state and action sets, defined in a novel way, to increase performance. The system can guide the mobile robot to a desired goal by avoiding obstacles with a high success rate in both simulated and real environments. Additionally, it is possible to observe the effects of the initial parameters used by the RL methods, e.g., λ , on learning, and also to make comparisons between the performances of Sarsa(λ) and Q(λ) algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.