Memory deficits are common in epilepsy patients. In these patients, the interictal EEG commonly shows interictal epileptiform discharges (IEDs). While IEDs are associated with transient cognitive impairments, it remains poorly understood why this is. We investigated the effects of human (male and female) hippocampal IEDs on single-neuron activity during a memory task in patients with medically refractory epilepsy undergoing depth electrode monitoring. We quantified the effects of hippocampal IEDs on single-neuron activity and the impact of this modulation on subjectively declared memory strength. Across all recorded neurons, the activity of 50 of 728 neurons were significantly modulated by IEDs, with the strongest modulation in the medial temporal lobe (33 of 416) and in particular the right hippocampus (12 of 58). Putative inhibitory neurons, as identified by their extracellular signature, were more likely to be modulated by IEDs than putative excitatory neurons (19 of 157 vs 31 of 571). Behaviorally, the occurrence of hippocampal IEDs was accompanied by a disruption of recognition of familiar images only if they occurred up to 2 s before stimulus onset. In contrast, IEDs did not impair encoding or recognition of novel images, indicating high temporal and task specificity of the effects of IEDs. The degree of modulation of individual neurons by an IED correlated with the declared confidence of a retrieval trial, with higher firing rates indicative of reduced confidence. Together, these data link the transient modulation of individual neurons by IEDs to specific declarative memory deficits in specific cell types, thereby revealing a mechanism by which IEDs disrupt medial temporal lobe-dependent declarative memory retrieval processes.
The P300 Speller is a common brain-computer interface communication system. There are many parallel lines of research underway to overcome the system’s low signal to noise ratio and thereby improve performance, including using famous face stimuli and integrating language information into the classifier. While both have been shown separately to provide significant improvements, the two methods have not yet been implemented together to demonstrate that the improvements are complimentary. The goal of this study is therefore twofold. First, we aim to compare the famous faces stimulus paradigm with an existing alternative stimulus paradigm currently used in commercial systems (i.e., character inversion). Second, we test these methods with language model integration to assess whether different optimization approaches can be combined to further improve BCI communication. In offline analysis using a previously published particle filter method, famous faces stimuli yielded superior results to both standard and inverting stimuli. In online trials using the particle filter method, all 10 subjects achieved a higher selection rate when using the famous faces flashing paradigm than when using inverting flashes. The improvements achieved by these methods are therefore complementary and a combination yields superior results to either method implemented individually when tested in healthy subjects.
A challenge for data sharing in systems neuroscience is the multitude of different data formats used. Neurodata Without Borders: Neurophysiology 2.0 (NWB:N) has emerged as a standardized data format for the storage of cellular-level data together with meta-data, stimulus information, and behavior. A key next step to facilitate NWB:N adoption is to provide easy to use processing pipelines to import/export data from/to NWB:N. Here, we present a NWB-formatted dataset of 1863 single neurons recorded from the medial temporal lobes of 59 human subjects undergoing intracranial monitoring while they performed a recognition memory task. We provide code to analyze and export/import stimuli, behavior, and electrophysiological recordings to/from NWB in both MATLAB and Python. The data files are NWB:N compliant, which affords interoperability between programming languages and operating systems. This combined data and code release is a case study for how to utilize NWB:N for human single-neuron recordings and enables easy re-use of this hard-to-obtain data for both teaching and research on the mechanisms of human memory.
The P300 speller is a common brain-computer interface system that can provide a means of communication for patients with amyotrophic lateral sclerosis (ALS). Recent studies have shown that incorporating language information in signal classification can improve system performance, but they have largely been tested on healthy volunteers in a laboratory setting. The goal of this study was to demonstrate the functionality of the P300 speller system with language models when used by ALS patients in their homes. Six ALS patients with functional ratings ranging from two to 28 participated in this study. All subjects had improved offline performance when using a language model and five subjects were able to type at least six characters per minute with over 84% accuracy in online sessions. The results of this study indicate that the improvements in performance using language models in the P300 speller translate into the ALS population, which could help to make it a viable assistive device.
The P300 Speller Brain-Computer Interface (BCI) provides a means of communication for those suffering from advanced neuromuscular diseases such as amyotrophic lateral sclerosis (ALS). Recent literature has incorporated language-based modelling, which uses previously chosen characters and the structure of natural language to modify the interface and classifier. Two complementary methods of incorporating language models have previously been independently studied: predictive spelling uses language models to generate suggestions of complete words to allow for the selection of multiple characters simultaneously, and language model-based classifiers have used prior characters to create a prior probability distribution over the characters based on how likely they are to follow. In this study, we propose a combined method which extends a language-based classifier to generate prior probabilities for both individual characters and complete words. In order to gauge the efficiency of this new model, results across 12 healthy subjects were measured. Incorporating predictive spelling increased typing speed using the P300 speller, with an average increase of 15.5% in typing rate across subjects, demonstrating that language models can be effectively utilized to create full word suggestions for predictive spelling. When combining predictive spelling with language model classification, typing speed is significantly improved, resulting in better typing performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.