Abstract. Herpesvirus cyprini (CHV) genome was traced in carp, Cyprinus carpio L., after acute infection by the method of in situ hybridization with biotinylated probes. The viral genome was detected in several tissues including cranial nerve ganglia. Subcutaneous tissue and spinal nerves. However, at this stage, viral antigens were not detected and the virus was not isolated. The viral genome was also detected in the same fish tissues when papillomas were present which contained viral antigens and even infective virus particles. After papilloma regression, the viral genome was still detected in these tissues. It is suggested that CHV becomes latently established in cranial nerve ganglia, subcutaneous tissue and spinal nerves, and is associated with the induction and recurrence of papillomas.
In some bivalve species, paternal mitochondrial DNA (mtDNA) from sperm is transmitted to the offspring. This is called ''doubly uniparental inheritance'' (DUI). Under DUI, male offspring receive both paternal (M type) and maternal (F type) mtDNA. Females predominantly receive F type. Expression levels of M and F type mtDNA and mitochondrial RNA localization have not been studied extensively. In this study, we quantified M and F type mtDNA and their expression levels in male and female somatic tissues and gonads with real-time polymerase chain reaction (PCR) in the blue mussel, Mytilus galloprovincialis. M and F type expression patterns were studied with in situ hybridization, using probes specific to M and F type mtDNA in the cytochrome b region. We found that (i) F type mtDNA was expressed in somatic tissues and female gonads, while M type was not expressed in these tissues; (ii) M type expression in male gonads was limited, but strong expression was observed during early spermatogenesis; and (iii) F type expression ratios were significantly lower in female gonads than in somatic tissues and lower than both M and F type expression ratios in male gonads. We propose (i) different systems for M and F type tissue-specific transcriptional regulation; and (ii) different functions for F and M type mtDNA, with F type being functional in somatic tissues and female gonads and M type functioning only in spermatogenetic cells.
In Mytilus mussels, paternal mitochondrial DNA (mtDNA) from sperm is known to be transmitted to offspring. This phenomenon is called doubly uniparental inheritance (DUI). Under DUI, sperm mtDNA (M type) is inherited only by males. Female mussels receive maternal mtDNA (F type). However, in our previous study, we showed female and unfertilized eggs have both F and M types. We hypothesized that the two M types both from sperm and unfertilized eggs were transmitted to offspring. To test the hypothesis, we examined the number of M type haplotypes in mature M. galloprovincialis. The M type in larvae was compared with those of the parents. Cross experiments were carried out to test the inheritance of M type. In six of 20 mature mussels, two M types were detected by sequence analysis and polymerase chain reaction-restriction fragment length polymorphism. In cross experiments of larval samples from five of 12 crosses, double peak wave was observed by single nucleotide polymorphisms analysis. In these larval samples, the higher peak wave was identical to the parental M type. Larvae received much more paternal M type than the maternal ones. We demonstrated that two M types from sperm and unfertilized eggs were transmitted to offspring in M. galloprovincialis.
Effects of thermal conditions on CHV infection were investigated both in vitro and in vivo. CHV multiplied in FHM cells at incubation temperatures from 10•Ž to 25 •Ž, but not at 30•Ž, optimal temperature being 15-20•Ž. Experimental infection of CHV was done on carp fry under controlled water temperatures of 15, 20 and 25•Ž. The mortality of carp fry due to CHV infection was markedly high at
In bivalve, the distribution of primordial germ cells can be traced from early embryogenesis to the veliger larva by the expression of the vasa ortholog. However, the distribution of germ cells from metamorphosis to maturation in bivalves has not been examined extensively. In this study, we used in situ hybridization to observe expression of the Mytilus galloprovincialis vasa-like gene (Myvlg). The distribution of germ cells was clarified in immature mussels. We observed germ cells in adult mussels during the non-reproductive and reproductive seasons. Myvlg was specifically expressed in germ cells. Gametogenesis occurs in acini surrounded by connective tissue. Myvlg expression was detected in spermatogonia, spermatocytes, oogonia, and oocytes. In the non-reproductive season, gametes were not observed in the acini, but Myvlg was expressed in germinal stem cells along the acini. The expression intensity in the non-reproductive season, however, was much weaker than that in the reproductive season. Myvlg-positive cells proliferated during the non-reproductive season. In immature mussels, a pair of germ cell clumps was distributed laterally in the connective tissue between the nephric tubules and posterior byssal retractor muscle. Germ cells were also observed along pericardium. When immature mussels grew, a pair of germ cell clumps migrated anteriorly in the connective tissue along the outer epithelium at the dorsal region of the mantle base between the mantle and gill. The number of germ cells increased significantly as the mussels grew. This is the first report to observe the proliferation and migration of germ cells in immature mussels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.