Smilax china L. (family Smilacaceae) and Salix alba L. (family Salicaceae) are plants that have been traditionally used to treat various ailments in Indian and Chinese medicine. A quantitative estimation of the methanolic extracts of these plants was performed by GC-MS analysis to obtain insight into its phytoconstituents responsible for therapeutic action. The antioxidant potential of the methanol extracts of Smilax china (MESC) and Salix alba (MESA) were assessedwith DPPH by using a UV spectrophotometer at a wavelength of 517 nm. The prevailing compounds found in MESC were lactam sugars including 2,5-dimethyl-2,4-dihydroxy-3(2H)-furanon (1.40%), 1,5-anhydro-6-deoxyhexo-2,3-diulose (4.33%), and alpha-methyl-1-sorboside (1.80%); the two alkaloids found were 1,4-methane-4,4a,5,6,7,8,9,9a-octahydro-10,10-dimethyl cyclohepta[d] pyridazine (0.87%) and 1,3,7-trimethyl-2,6-dioxopurine(0.54%); terpenes included deltacadinene (0.39%), terpineol, ( +) -cedrol (22.13%), 3-thujanol (0.77%), and 9,10-dehydro-cycloisolongifolene (0.34%); fatty acids included cis-vaccenic acid (4.98%) and telfairic acid (1.10%); esters included 1,2,3-propanetriol diacetate (7.56%), 7-hexadecenoic acid, methyl ester (1.77%), eicosanoic acid, and methyl ester (0.95%); and glycerol included 1,2,3-propanetriol (28.75%). The interesting compounds found in MESA were reducing sugars like D-allose (4.40%) and pyrogallol (10.48%), alkaloids like caffeine (63.49%), and esters like methyl octadecanoate (0.53%). Both fractions revealed considerable antioxidant activity. The reported existing phenolic compounds and terpenes are responsible for the antioxidant activity of the plant extracts.
Background: Interest in the antioxidant and antidiabetic activity of natural products are growing vastly in the modern world. Thin layer chromatography-bioautography-mass spectroscopy (TLC-bioautography-MS) plays an important role in chemico-biological screening of natural sources. TLC combined with 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) free radical, α-amylase and α-glucosidase bioassay were used to evaluate antioxidant and antidiabetic activities, respectively, in different extracts of Citrullus colocynthis (Hanzal), a well-known traditional Indian Unani medicinal plant. Objective: To develop a TLC-bioautographic-MS method for DPPH, α-amylase, and glucosidase inhibitors in different extract of C. colocynthis fruits. Method: Fruits of C. colocynthis were successively extracted with toluene, dichloromethane, ethyl acetate, methanol, and water. TLC solvents were developed, and bioautographic-MS analysis was carried out to identify the antioxidant and antidiabetic compounds. Results: HPTLC fingerprinting analysis showed maximum numbers of band separated in dichloromethane and ethyl acetate extracts of C. colocynthis, fourteen and thirteen at 254 and 366 nm, respectively. Whereas six and five separated bands were observed in toluene extract at 254 and 366 nm, respectively showed minimum numbers of metabolites. Based on TLC-bioautography-MS, maximum number of antioxidant compounds were identified in dichloromethane extract. Except aqueous extract of C. colocynthis, all the extracts have shown antidiabetic activity. On the other hand, there were no antioxidant compounds in methanolic extract of C. colocynthis. Conclusions: The results of this study reveal that TLC-bioautography-MS–guided strategy used to identify antioxidant and antidiabetic compounds of C. colocynthis is very useful technique for high-throughput screening of bioactive compounds. Highlights: TLC-MS bioautography is a simple and fast to enables bioactive compounds present in extracts.
Chrysanthemums constitute approximately 30 species of perennial flowering plants, belonging to the family Asteraceae, native to Asia and Northeastern Europe. Chrysanthemum is a natural cosmetic additive extracted from Chinese herb by modern biochemical technology. It has the properties of anti-bacterial, anti-viral, reducing (detoxification) and anti-inflammation. It possesses antioxidant characteristics, which could assist in minimizing free-radical induced damage. Therefore, it is widely used in skin and hair care products. Chemical composition of this herbal remedy includes kikkanols, sesquiterpenes, flavonoids, various essential oils containing camphor, cineole, sabinol, borneole and other elements that interfere with DNA, causing erroneous or no PCR products. In the present study, testing and modification of various standard protocols for isolation of high-quality DNA from leaf tissues and seeds of C. indicum was done. It was observed that the DNA obtained from seeds and leaf tissues with a modified cetyltrimethylammonium bromide buffer protocol was of good quality, with no colored pigments and contaminants. Also, DNA could be extracted from leaf tissues without using liquid nitrogen. Quality of DNA extracted from seeds was much better as compared to that extracted from leaf tissues. The extracted DNA was successfully amplified by PCR using arbitrary RAPD primers. The same protocol will probably be useful for extraction of high-molecular weight DNA from other plant materials containing large amounts of secondary metabolites and essential oils.
Medicinal plants have been used since ancient times for their various therapeutic activities and are safer compared to modern medicines, especially when properly identifying and preparing them and choosing an adequate dose administration. The phytochemical compounds present in plants are progressively yielding evidence in modern drug delivery systems by treating various diseases like cancers, coronary heart disease, diabetes, high blood pressure, inflammation, microbial, viral and parasitic infections, psychotic diseases, spasmodic conditions, ulcers, etc. The phytochemical requires a rational approach to deliver the compounds to enhance the efficacy and to improve patients’ compatibility. Nanotechnology is emerging as one of the most promising strategies in disease control. Nano-formulations could target certain parts of the body and control drug release. Different studies report that phytochemical-loaded nano-formulations have been tested successfully both in vitro and in vivo for healing of skin wounds. The use of nano systems as drug carriers may reduce the toxicity and enhance the bioavailability of the incorporated drug. In this review, we focus on various nano-phytomedicines that have been used in treating skin burn wounds, and how both nanotechnology and phytochemicals are effective for treating skin burns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.