Disruption of circadian rhythms leads to obesity and metabolic disorders. Timed restricted feeding (RF) provides a time cue and resets the circadian clock, leading to better health. In contrast, a high-fat (HF) diet leads to disrupted circadian expression of metabolic factors and obesity. We tested whether long-term (18 wk) clock resetting by RF can attenuate the disruptive effects of diet-induced obesity. Analyses included liver clock gene expression, locomotor activity, blood glucose, metabolic markers, lipids, and hormones around the circadian cycle for a more accurate assessment. Compared with mice fed the HF diet ad libitum, the timed HF diet restored the expression phase of the clock genes Clock and Cry1 and phase-advanced Per1, Per2, Cry2, Bmal1, Rorα, and Rev-erbα. Although timed HF-diet-fed mice consumed the same amount of calories as ad libitum low-fat diet-fed mice, they showed 12% reduced body weight, 21% reduced cholesterol levels, and 1.4-fold increased insulin sensitivity. Compared with the HF diet ad libitum, the timed HF diet led to 18% lower body weight, 30% decreased cholesterol levels, 10% reduced TNF-α levels, and 3.7-fold improved insulin sensitivity. Timed HF-diet-fed mice exhibited a better satiated and less stressed phenotype of 25% lower ghrelin and 53% lower corticosterone levels compared with mice fed the timed low-fat diet. Taken together, our findings suggest that timing can prevent obesity and rectify the harmful effects of a HF diet.
Breakfast consumption acutely affects clock and clock-controlled gene expression leading to normal oscillation. Breakfast skipping adversely affects clock and clock-controlled gene expression and is correlated with increased postprandial glycemic response in both healthy individuals and individuals with diabetes.
The circadian clock in peripheral tissues can be entrained by restricted feeding (RF), a regimen that restricts the duration of food availability with no calorie restriction (CR). However, it is not known whether RF can delay the occurrence of age-associated changes similar to CR. We measured circadian expression of clock genes, disease marker genes, metabolic factors and inflammatory and allergy markers in mouse serum, liver, jejunum and white adipose tissue (WAT) after long-term RF of 4 months. We found that circadian rhythmicity is more robust and is phase advanced in most of the genes and proteins tested under RF. In addition, average daily levels of some disease and inflammatory markers were reduced under RF, including liver Il-6 mRNA, tumour necrosis factor (TNF)-α and nuclear factor κB (NF-κB) protein; jejunum Arginase, Afp, Gadd45β, Il-1α and Il-1β mRNA, and interleukin (IL)-6 and TNF-α protein and WAT Il-6, Il-1β, Tnfα and Nfκb mRNA. In contrast, the anti-inflammatory cytokine Il-10 mRNA increased in the liver and jejunum. Our results suggest that RF may share some benefits with those of CR. As RF is a less harsh regimen to follow than CR, the data suggest it could be proposed for individuals seeking to improve their health.
In type 2 diabetes, insulin resistance and progressive b-cell failure require treatment with high insulin doses, leading to weight gain. Our aim was to study whether a three-meal diet (3Mdiet) with a carbohydrate-rich breakfast may upregulate clock gene expression and, as a result, allow dose reduction of insulin, leading to weight loss and better glycemic control compared with an isocaloric six-meal diet (6Mdiet). RESEARCH DESIGN AND METHODS Twenty-eight volunteers with diabetes (BMI 32.4 6 5.2 kg/m 2 and HbA 1c 8.1 6 1.1% [64.5 6 11.9 mmol/mol]) were randomly assigned to 3Mdiet or 6Mdiet. Body weight, glycemic control, continuous glucose monitoring (CGM), appetite, and clock gene expression were assessed at baseline, after 2 weeks, and after 12 weeks. RESULTS 3Mdiet, but not 6Mdiet, led to a significant weight loss (25.4 6 0.9 kg) (P < 0.01) and decreased HbA 1c (212 mmol/mol [21.2%]) (P < 0.0001) after 12 weeks. Fasting glucose and daily and nocturnal glucose levels were significantly lower on the 3Mdiet. CGM showed a significant decrease in the time spent in hyperglycemia only on the 3Mdiet. Total daily insulin dose was significantly reduced by 26 6 7 units only on the 3Mdiet. There was a significant decrease in the hunger and cravings only in the 3Mdiet group. Clock genes exhibited oscillation, increased expression, and higher amplitude on the 3Mdiet compared with the 6Mdiet. CONCLUSIONS A 3Mdiet, in contrast to an isocaloric 6Mdiet, leads to weight loss and significant reduction in HbA 1c , appetite, and overall glycemia, with a decrease in daily insulin. Upregulation of clock genes seen in this diet intervention could contribute to the improved glucose metabolism. Diet intervention is a pivotal component of the medical management of diabetes (1). Treatment of insulin-resistant patients with type 2 diabetes with progressive b-cell failure usually starts with a diet intervention consisting of five or six small meals per day, with calories and carbohydrates uniformly distributed throughout the day (2-4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.