From the methanolic-soluble extract of the wood of Artocarpus heterophyllus, four new flavones, artocarmins A-D (1-4), and three new chalcones, artocarmitins A-C (5-7), have been isolated together with 13 known compounds. Their structures were determined on the basis of the spectroscopic data. Compounds 1-4, 6, 7, 9-16, and 20 displayed significant tyrosinase inhibitory activity. The most active compound, morachalcone A (12) (IC50, 0.013 μM), was 3000 times more active as a tyrosinase inhibitor than a positive control, kojic acid (IC50, 44.6 μM).
The ethanol extract of propolis from the Vietnamese stingless bee Trigona minor possessed potent preferential cytotoxicity against PANC-1 human pancreatic cancer cells in nutrient-deprived medium, with a PC value of 14.0 μg/mL. Chemical investigation of this extract led to the isolation of 15 cycloartane-type triterpenoids, including five new compounds (1-5), and a lanostane-type triterpenoid. The structures of the new compounds were elucidated on the basis of NMR spectroscopic analysis. Among the isolated compounds, 23-hydroxyisomangiferolic acid B (5) and 27-hydroxyisomangiferolic acid (13) exhibited the most potent preferential cytotoxicity against PANC-1 human pancreatic cancer cells under nutrition-deprived conditions, with PC values of 4.3 and 3.7 μM, respectively.
Human pancreatic cancer cell lines have a remarkable tolerance to nutrition starvation, which enables them to survive under a tumor microenvironment. The search for agents that preferentially inhibit the survival of cancer cells under low nutrient conditions represents a novel antiausterity strategy in anticancer drug discovery. In this investigation, a methanol extract of the rhizomes of Boesenbergia pandurata showed potent preferential cytotoxicity against PANC-1 human pancreatic cancer cells under nutrient-deprived conditions, with a PC value of 6.6 μg/mL. Phytochemical investigation of this extract led to the isolation of 15 compounds, including eight new cyclohexene chalcones (1-8). The structures of the new compounds were elucidated by NMR spectroscopic data analysis. Among the isolated compounds obtained, isopanduratin A1 (14) and nicolaioidesin C (15) exhibited potent preferential cytotoxicity against PANC-1 human pancreatic cancer cells under nutrition-deprived conditions, with PC values of 1.0 and 0.84 μM, respectively.
Background
Tyrosinase is an oxidoreductase that is very important in medicine and cosmetics because the excessive production of melanin causes hyperpigmentation. The development of novel, effective tyrosinase inhibitors has long been pursued. In preliminary tests, we found that an extract of the wood of Artocarpus heterophyllous (AH) potently inhibited tyrosinase activity.ResultsTwo new flavonoids, artocaepin E (1) and artocaepin F (2), were isolated from the wood of AH, together with norartocarpetin (3), artocarpanone (4), liquiritigenin (5), steppogenin (6), and dihydromorin (7). Their structures were elucidated using one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) and mass spectrometry. The absolute configuration of 2 was determined from the circular dichroism (CD) spectrum. Artocarpanone (4) had the most potent tyrosinase inhibitory effect, with an IC50 of 2.0 ± 0.1 μM, followed by artocaepin E (1) and steppogenin (6), with IC50 values of 6.7 ± 0.8 and 7.5 ± 0.5 μM, respectively. A kinetic investigation indicated that 1 showed competitive inhibition, with an inhibition constant (Ki) of 6.23 μM.ConclusionsThese results demonstrate that extracts of the wood of AH and its phytochemical constituents are potential sources for skin-whitening agents.Graphical abstractArtocarmin E (1) and artocarmin F (2) were isolated from the wood of Artocarpus heterophyllous. Their structures were elucidated using nuclear magnetic resonance analysis and mass spectrometric methodsElectronic supplementary materialThe online version of this article (doi:10.1186/s13065-016-0150-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.