Arsenic trioxide (As 2 O 3 ) is an effective therapeutic against acute promyelocytic leukemia and certain solid tumors. Because As 2 O 3 inhibits mitochondrial respiration in leukemia cells, we hypothesized that As 2 O 3 might enhance the radiosensitivity of solid tumors by increasing tumor oxygenation [partial pressure of oxygen (pO 2 )] via a decrease in oxygen consumption. Two murine models of radioresistant hypoxic cancer were used to study the effects of As 2 O 3 . We measured pO 2 and the oxygen consumption rate in vivo by electron paramagnetic resonance oximetry and 19 fluorine-MRI relaxometry. Tumor perfusion was assessed by Patent blue staining. In both models, As 2 O 3 inhibited mitochondrial respiration, leading to a rapid increase in pO 2 . The decrease in oxygen consumption could be explained by an observed decrease in glutathione in As 2 O 3 -treated cells, as this could increase intracellular reactive oxygen species that can disrupt mitochondrial membrane potential. When tumors were irradiated during periods of As 2 O 3 -induced augmented oxygenation, radiosensitivity increased by 2.2-fold compared with control mice. Notably, this effect was abolished when temporarily clamped tumors were irradiated. Together, our findings show that As 2 O 3 acutely increases oxygen consumption and radiosensitizes tumors, providing a new rationale for clinical investigations of As 2 O 3 in irradiation protocols to treat solid tumors. Cancer Res; 72(2); 482-90. Ó2011 AACR.
The shedding of extracellular vesicles (EVs) from the red blood cell (RBC) surface is observed during senescence in vivo and RBC storage in vitro . Two main models for EV shedding, respectively based on calcium rise and oxidative stress, have been proposed in the literature but the role of the plasma membrane lipid composition and properties is not understood. Using blood in K + /EDTA tubes stored for up to 4 weeks at 4°C as a relevant RBC vesiculation model, we showed here that the RBC plasma membrane lipid composition, organization in domains and biophysical properties were progressively modified during storage and contributed to the RBC vesiculation. First, the membrane content in cholesterol and linoleic acid decreased whereas lipid peroxidation and spectrin:membrane occupancy increased, all compatible with higher membrane rigidity. Second, phosphatidylserine surface exposure showed a first rapid rise due to membrane cholesterol decrease, followed by a second calcium-dependent increase. Third, lipid domains mainly enriched in GM1 or sphingomyelin strongly increased from the 1st week while those mainly enriched in cholesterol or ceramide decreased during the 1st and 4th week, respectively. Fourth, the plasmatic acid sphingomyelinase activity considerably increased upon storage following the sphingomyelin-enriched domain rise and potentially inducing the loss of ceramide-enriched domains. Fifth, in support of the shedding of cholesterol- and ceramide-enriched domains from the RBC surface, the number of cholesterol-enriched domains lost and the abundance of EVs released during the 1st week perfectly matched. Moreover, RBC-derived EVs were enriched in ceramide at the 4th week but depleted in sphingomyelin. Then, using K + /EDTA tubes supplemented with glucose to longer preserve the ATP content, we better defined the sequence of events. Altogether, we showed that EV shedding from lipid domains only represents part of the global vesiculation mechanistics, for which we propose four successive events (cholesterol domain decrease, oxidative stress, sphingomyelin/sphingomyelinase/ceramide/calcium alteration and phosphatidylserine exposure).
Macrophages play a central role in immune and tissue responses of granulomatous lung diseases induced by pathogens and foreign bodies. Circulating monocytes are generally viewed as central precursors of these tissue effector macrophages. Here, we provide evidence that granulomas derive from alveolar macrophages serving as a local reservoir for the expansion of activated phagocytic macrophages. By exploring lung granulomatous responses to silica particles in IL-1-deficient mice, we found that the absence of IL-1α, but not IL-1β, was associated with reduced CD11b(high) phagocytic macrophage accumulation and fewer granulomas. This defect was associated with impaired alveolar clearance and resulted in the development of pulmonary alveolar proteinosis (PAP). Reconstitution of IL-1α(-/-) mice with recombinant IL-1α restored lung clearance functions and the pulmonary accumulation of CD11b(high) phagocytic macrophages. Mechanistically, IL-1α induced the proliferation of CD11b(low) alveolar macrophages and differentiated these cells into CD11b(high) macrophages which perform critical phagocytic functions and organize granuloma. We newly discovered here that IL-1α triggers lung responses requiring macrophage proliferation and maturation from tissue-resident macrophages.
IL-22 has a detrimental role in skin inflammatory processes, for example in psoriasis.As transcription factor, AhR controls the IL-22 production by several cell types (i.e. Th17 cells). Here, we analyzed the role of Ahr in IL-22 production by immune cells in the inflamed skin, using an imiquimod-induced psoriasis mouse model. Our results indicate that IL-22 is expressed in the ear of imiquimod-treated Ahr −/− mice but less than in wildtype mice. We then studied the role of AhR on three cell populations known to produce IL-22 in the skin: γδ T cells, Th17 cells, and ILC3, and a novel IL-22-producing cell type identified in this setting: CD4 − CD8 − TCRβ + T cells. We showed that AhR is required for IL-22 production by Th17, but not by the three other cell types, in the imiquimod-treated ears. Moreover, AhR has a role in the recruitment of γδ T cells, ILC3, and CD4 − CD8 − TCRβ + T cells into the inflamed skin or in their local proliferation. Taken together, AhR has a direct role in IL-22 production by Th17 cells in the mouse ear skin, but not by γδ T cells, CD4 − CD8 − TCRβ + T cells and ILCs.Keywords: AhR r IL-22 r Imiquimod r Innate lymphoid cells (ILCs) r Skin r T cells Additional supporting information may be found in the online version of this article at the publisher's web-site
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.