The development of programmable biomaterials for use in nanofabrication represents a major advance for the future of biomedicine and diagnostics. Recent advances in structural nanotechnology using nucleic acids have resulted in dramatic progress in our understanding of nucleic acid-based nanostructures (NANs) for use in biological applications. As the NANs become more architecturally and functionally diverse to accommodate introduction into living systems, there is a need to understand how critical design features can be controlled to impart desired performance in vivo. In this review, we survey the range of nucleic acid materials utilized as structural building blocks (DNA, RNA, and xenonucleic acids), the diversity of geometries for nanofabrication, and the strategies to functionalize these complexes. We include an assessment of the available and emerging characterization tools used to evaluate the physical, mechanical, physiochemical, and biological properties of NANs in vitro. Finally, the current understanding of the obstacles encountered along the in vivo journey is contextualized to demonstrate how morphological features of NANs influence their biological fates. We envision that this summary will aid researchers in the designing novel NAN morphologies, guide characterization efforts, and design of experiments and spark interdisciplinary collaborations to fuel advancements in programmable platforms for biological applications.
DNA-based nanostructures (DNs) are advantageous for the design of functional materials for biology and medicine due to the nanoscale control provided by their predictable self-assembly. However, the use of DNs...
International audienceZinc oxide films have been prepared via spray pyrolysis using a perfume atomizer. ZnCl2 has been used as precursor. The influence of the precursor solution and dopant concentration has been investigated. Homogeneous films are obtained with a precursor concentration ranging between 0.3 and 0.4 M and a SnCl2 dopant concentration of 1-2%. The films exhibit broad band gaps and small conductivity. The microstructural properties of these films have been compared with that of films deposited using a classical nozzle. Films deposited by perfume atomizer are rougher, with smaller grain size, compared to films deposited with a classical nozzle
Gadolinium (Gd)-based contrast agents (CA) are widely used to enhance anatomical details in magnetic resonance imaging (MRI). Significant research has expanded the field of CAs into bioresponsive CAs by modulating the signal to image and monitor biochemical processes, such as pH. In this work, we introduce the modular, dynamic actuation mechanism of DNA-based nanostructures as a new way to modulate the MRI signal based on rotational correlation time, τR. We combined a pH-responsive oligonucleotide (i-motif) and a clinical standard CA (Gd-DOTA), to develop a pH-responsive MRI CA. The i-motif folds into a quadruplex in acidic conditions and was incorporated onto gold nanoparticles (iM-GNP) to achieve increased relaxivity, r1, compared to unbound i-motif. In vitro, iM-GNP resulted in a significant increase in r1 over a decreasing pH range (7.5 - 4.5) with a calculated pKa = 5.88 ± 0.01 and a 16.7% change per 0.1 pH unit. In comparison, the control CA with a non-responsive DNA strand (T33-GNP) did not show a significant change in r1 over the same pH range. To demonstrate the potential for performance in tissue, CAs were evaluated in an ex vivo rat brain model. When compared to pre-contrast signal intensity (1/T1), the response to a simulated acidic microenvironment was over 5 times higher than the signal measured in a physiological pH. This approach paves a path for novel programmable, dynamic DNA-based complexes for τR-modulated bioresponsive MRI CAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.