Using anodic oxidation with a time-dependent linearly varying anodization voltage, we have made films of tapered, conical-shaped titania nanotubes. The tapered, conical-shaped nanotubes were obtained by anodizing titanium foil in a 0.5% hydrofluoric acid electrolyte, with the anodization voltage linearly increased from 10-23 V at rates varying from 2.0-0.43 V/min. The linearly increasing anodization voltage results in a linearly increasing nanotube diameter, with the outcome being an array of conical-shaped nanotubes approximately 500 nm in length. Evidence provided by scanning electron-microscope images of the titanium substrate during the initial stages of the anodization process enabled us to propose a mechanism of nanotube formation.
This paper describes integration of an advanced composite high-K gate stack (4nm TaSiO x -2nm InP) in the In 0.7 Ga 0.3 As quantum-well field effect transistor (QWFET) on silicon substrate. The composite high-K gate stack enables both (i) thin electrical oxide thickness (t OXE ) and low gate leakage (J G ) and (ii) effective carrier confinement and high effective carrier velocity (V eff ) in the QW channel. The L G =75nm In 0.7 Ga 0.3 As QWFET on Si with this composite high-K gate stack achieves high transconductance of 1750μS/μm and high drive current of 0.49mA/μm at V DS =0.5V.
Although the role of polycationic macromolecules in catalyzing the synthesis of silica structures is well established, detailed understanding of the mechanisms behind the production of silica structures of controlled morphologies remains unclear. In this study, we have used both poly-L-lysine (PLL) and/or poly-D-lysine (PDL) for silica synthesis to investigate mechanisms controlling inorganic morphologies. The formation of both spherical silica particles and hexagonal plates was observed. The formation of hexagonal plates was suggested, via circular dichroic spectroscopy (CD), to result from the assembly of helical polylysine molecules. We confirm that the formation of PLL helices is a prerequisite to the hexagonal silica synthesis. In addition, we present for the first time that the handedness of the helicity of the macromolecule does not affect the formation of hexagonal silica. We also show, by using two different silica precursors, that the precursor does not have a direct effect on the formation of hexagonal silica plates. Furthermore, when polylysine helices were converted to beta-sheet structure, only silica particles were obtained, thus suggesting that the adoption of a helical conformation by PLL is required for the formation of hexagonally organized silica. These results demonstrate that the change in polylysine conformation can act as a "switch" in silica structure formation and suggest the potential for controlling morphologies and structures of inorganic materials via control of the conformation of soft macromolecular templates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.