Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnosis of COVID-19 depends on quantitative reverse transcription PCR (qRT-PCR), which is time-consuming and requires expensive instrumentation. Here, we report an ultrasensitive electrochemical biosensor based on isothermal rolling circle amplification (RCA) for rapid detection of SARS-CoV-2. The assay involves the hybridization of the RCA amplicons with probes that were functionalized with redox active labels that are detectable by an electrochemical biosensor. The one-step sandwich hybridization assay could detect as low as 1 copy/μL of N and S genes, in less than 2 h. Sensor evaluation with 106 clinical samples, including 41 SARS-CoV-2 positive and 9 samples positive for other respiratory viruses, gave a 100% concordance result with qRT-PCR, with complete correlation between the biosensor current signals and quantitation cycle (Cq) values. In summary, this biosensor could be used as an on-site, real-time diagnostic test for COVID-19.
Correlations between the activities of microbial communities and water quality in an earthen pond were investigated monthly during the shrimp growing period. The TAN gradually decreased compared to the beginning time, thereby resulting in an overall decrease of 81.3%. In contrast, the overall nitrate concentration increased 46.3% over this same period. Microbial community analysis using PCR-DGGE showed that changes in community dynamics that occurred during the shrimp growing period might be correlated to water quality. Overall, there were 3 groups of microbial dynamics. The 1st was observed in all investigations, was microflora found in the shrimp culturing system, which included the following: Nitrosomonas eutropha, Exiguobacterium SKRP 5, and Exiguobacteria sp. CNJ771. The 2nd involved the replacement of bacteria from one type to another, such as from Flavobacteriales bacterium to Aquiflexum balticum, which are involved in shrimp shell degradation. The 3rd consisted of microbes observed at only one time point, such as Synechococcus sp. Y0011 (W0), and Stenotrophomonas maltophilia (W3), or at several time points, such as Pseudomonas lanceolata (W0 and W3) and Burkholderia sp. WBF2 (W1 and W2). Although this third group of bacteria was not found at all time points tested, the group was important for balancing the shrimp culturing system, which is important for a successful shrimp cultivation.
This study characterized the microbial community and population dynamics in an anaerobic hybrid reactor (AHR) treating cassava starch wastewater. Methanogens and nonmethanogens were followed during the start-up and operation of the reactor, and linked to operational and performance data. Biomass samples taken from the sludge bed and packed bed zones of the AHR at intervals throughout the operational period were examined by 16S rRNA fluorescence in situ hybridization (FISH). The start-up seed and the reactor biomass were sampled during the feeding of the wastewater with a chemical oxygen demand (COD) value of 8 g L(-1) and a hydraulic retention time (HRT) of 8 days. These samples were characterized by the predominance of cells with long-rod morphology similar to Methanosaeta spp. Following a sharp operational change, accomplished by increasing the COD concentration of the organic influent from 8 to 10 g L(-1) and reducing the HRT from 8 to 5 days, there was a doubling of the organic loading rate, a reduction of the COD removal efficiency, as well as decreased methane content in the biogas and an accumulation of total volatile acids in the reactor. Moreover, this operational change resulted in a significant population shift from long-rod Methanosaeta-like cells to tetrad-forming Methanosarcina-like cells. The distributions of microbial populations involved in different zones of the AHR were determined. The results showed that nonmethanogens became the predominant population in both sludge and the packed bed zone. However, the percentage of methanogens in the packed bed zone was higher than that in the sludge bed zone. This higher percentage of methanogens was likely caused by the fact that the packed bed zone provided a suitable environmental condition with an appropriate nutrient availability for methanogen growth.
COVID-19 is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnosis of COVID-19 depends on quantitative reverse transcription PCR (qRT-PCR), which is time-consuming and requires expensive instrumentation. Here, we report an ultrasensitive electrochemical biosensor based on isothermal rolling circle amplification (RCA) for rapid detection of SARS-CoV-2. The assay involves the hybridization of the RCA amplicons with probes that were functionalized with redox active labels that are detectable by an electrochemical biosensor. The one-step sandwich hybridization assay could detect as low as 1 copy/mL of N and S genes, in less than 2 hours. Sensor evaluation with 105 clinical samples, including 40 SARS-CoV-2 positive and 9 samples positive for other respiratory viruses, gave a 100% concordance result with qRT-PCR, with complete correlation between the biosensor current signals and quantitation cycle (Cq) values. In summary, this biosensor could be used as an on-site, real-time diagnostic test for COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.