The Cu2ZnGe
X
Sn1‐X
S4 (CZGTS) thin‐film solar cells have a limited open‐circuit voltage (V
OC) due to bulk and interface recombination. Since the standard CdS buffer layer gives a significant cliff‐like conduction band offset to CZGTS, alternative buffer layers are needed to reduce the interface recombination. This work compares the performance of wide bandgap Cu2ZnGeS4 (CZGS) solar cells fabricated with nontoxic Zn
x
Sn1–x
O
y
(ZTO) buffer layers grown by atomic layer deposition under different conditions. The V
OC of the CZGS solar cell improved significantly to over 1 V by substituting CdS with ZTO. However, V
OC is relatively insensitive to ZTO bandgap variations. The short‐circuit current is generally low but is improved with KCN etching of the CZGS absorber before deposition of the ZTO buffer layer. A possible explanation for the device behavior is the presence of an oxide interlayer for nonetched devices.
Alloying of Cu2ZnSnS4 (CZTS) with Ge can potentially promote grain growth and suppress the formation of Sn‐related defects. Herein, a two‐step fabrication route based on compound co‐sputtering and sulfurization at a high temperature is used to prepare Ge‐incorporated CZTS (Cu2ZnGexSn1 − xS4 [CZGTS]). For Cu2ZnGeS4 (CZGS), films deposited using elemental Ge and binary GeS targets are compared. The recrystallization is shown to be promoted for the absorbers deposited using Ge target, possibly due to lower sulfur content in the precursor suppressing the formation of wurtzite‐like phases during sputtering. The grain growth and crystallinity in CZGTS are slightly improved for x = 0.2 but not for higher concentration of the incorporated Ge. Owing to the composition‐dependent electronic properties, compositionally graded CZGTS films may be beneficial for reducing recombination towards the back contact. Hence, herein, the successful formation of a steep concentration gradient with Ge and Sn is demonstrated by the deposition of a CZGS/CZTS precursor stack followed by sulfurization with varying time periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.