In this study, we produced europium-doped yttoria (Y2O3:Eu) nanoparticles and investigated their photoluminescent properties and biocompatibility. The Y2O3:Eu nanoparticles showed excellent photoluminescent properties and cytocompatibility. We also analyzed the photophysical properties of the nanoparticles in PMMA films. When the Y2O3:Eu nanoparticles were incorporated in the polymer film, they showed a strong red emission spectrum, similar to that seen with the particles alone. Energy dispersive X-ray spectroscopy (EDS) measurements indicated that the particles were distributed homogeneously in the PMMA film. Such materials could be applied not only to optoelectronic devices but also to biomedical applications such as bioimaging tools or luminescent medical/dental adhesive materials.
Cytotoxicity and cell behavior to micro / nanoparticles of TiO2 and CuO was evaluated using the viability measurement and time-lapse observation. After cultured, osteoblastic cells MC3T3-E1 were exposed to particles. After 24 hour exposure, their morphology was observed using a SEM and the viability was measured. Cells exposed to TiO2 indicated no or very low decrease of viability. The results were independent of the particle size. On the other hand, the viability of cells exposed to CuO decreased with the concentration, and showed the size dependence. The nanosized CuO indicated higher toxicity compared with micro-sized one. Dynamic behavior of cells exposed to nanoparticles, was succeeded to observe in a time-lapse method for 24 hours. The observation showed that the cells exposed to CuO became dead after forming a spherical shape. This is consistent with the image taken by SEM. Time-lapse observation made it possible to see the dynamic reaction process from cell contact to particles at first, the following cell activity response and finally to cell death, which revealed a considerably different morphology from the static cell observed after fixation by conventional method.
We assessed the biocompatibility of nano-sized ceramic particles with several cells types. Though these particles have less than 100 nm in diameter, they act as submicron-sized particles in saline by aggregation that was estimated using laser diffraction particle size analysis (LDS). they act as submicro-sized particles in saline by aggregation based on laser diffraction particle size analysis (LDS). Several types of cells (osteoblasts, osteosarcoma and hepatocyte cells) were exposed to these particles and their cytocompatibility was estimated. Not only the cytotoxic assay but also their static and dynamic morphology under nanoparticles exposure were investigated. The intercellular uptake of particles was determined using a confocal fluorescence microscope. The particles used in this study did not inhibit cellular activity or growth even when their concentrations were high. Only copper oxide particles caused acute cytotoxicity depending on the particle size. The cytotoxicity assay, dynamic behavior of the nanoparticle-exposed cells and their examination under a confocal fluorescence microscope suggests that the irritative reaction was induced by contact between the cells and particles, whereas eluted copper ions are not dominant factor. These results indicate that nano-sized particles used in this study have excellent biocompatibility except copper oxide ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.