The benefits of neural approaches are undisputed in many application areas. However, today's research practice in applied machine learning-where researchers often use a variety of baselines, datasets, and evaluation procedures-can make it difficult to understand how much progress is actually achieved through novel technical approaches. In this work, we focus on the fast-developing area of session-based recommendation and aim to contribute to a better understanding of what represents the state-of-the-art.To that purpose, we have conducted an extensive set of experiments, using a variety of datasets, in which we benchmarked four neural approaches that were published in the last three years against each other and against a set of simpler baseline techniques, e.g., based on nearest neighbors. The evaluation of the algorithms under the exact same conditions revealed that the benefits of applying today's neural approaches to session-based recommendations are still limited. In the majority of the cases, and in particular when precision and recall are used, it turned out that simple techniques in most cases outperform recent neural approaches. Our findings therefore point to certain major limitations of today's research practice. By sharing our evaluation framework publicly, we hope that some of these limitations can be overcome in the future. CCS CONCEPTS• Information systems → Recommender systems.
Recommender systems are tools that support online users by pointing them to potential items of interest in situations of information overload. In recent years, the class of session-based recommendation algorithms received more attention in the research literature. These algorithms base their recommendations solely on the observed interactions with the user in an ongoing session and do not require the existence of long-term preference profiles. Most recently, a number of deep learning-based (“neural”) approaches to session-based recommendations have been proposed. However, previous research indicates that today’s complex neural recommendation methods are not always better than comparably simple algorithms in terms of prediction accuracy. With this work, our goal is to shed light on the state of the art in the area of session-based recommendation and on the progress that is made with neural approaches. For this purpose, we compare twelve algorithmic approaches, among them six recent neural methods, under identical conditions on various datasets. We find that the progress in terms of prediction accuracy that is achieved with neural methods is still limited. In most cases, our experiments show that simple heuristic methods based on nearest-neighbors schemes are preferable over conceptually and computationally more complex methods. Observations from a user study furthermore indicate that recommendations based on heuristic methods were also well accepted by the study participants. To support future progress and reproducibility in this area, we publicly share the session-rec evaluation framework that was used in our research.
Many collaborative recommender systems leverage social correlation theories to improve suggestion performance. However, they focus on explicit relations between users and they leave out other types of information that can contribute to determine users' global reputation; e.g., public recognition of reviewers' quality.We are interested in understanding if and when these additional types of feedback improve Top-N recommendation. For this purpose, we propose a multi-faceted trust model to integrate local trust, represented by social links, with various types of global trust evidence provided by social networks. We aim at identifying general classes of data in order to make our model applicable to different case studies. Then, we test the model by applying it to a variant of User-to-User Collaborative filtering (U2UCF) which supports the fusion of rating similarity, local trust derived from social relations, and multi-faceted reputation for rating prediction. We test our model on two datasets: the Yelp one publishes generic friend relations between users but provides different types of trust feedback, including user profile endorsements. The LibraryThing dataset offers fewer types of feedback but it provides more selective friend relations aimed at content sharing. The results of our experiments show that, on the Yelp dataset, our model outperforms both U2UCF and state-of-the-art trust-based recommenders that only use rating similarity and social relations. Differently, in the LibraryThing dataset, the combination of social relations and rating similarity achieves the best results. The lesson we learn is that multi-faceted trust can be a valuable type of information for recommendation. However, before using it in an application domain, an analysis of the type and amount of available trust evidence has to be done to assess its real impact on recommendation performance.
Searching information in a Geographical Information System (GIS) usually imposes that users explore precompiled category catalogs and select the types of information they are looking for. Unfortunately, that approach is challenging because it forces people to adhere to a conceptualization of the information space that might be different from their own. In order to address this issue, we propose to support textual search as the basic interaction model, exploiting linguistic information, together with category exploration, for query interpretation and expansion. This paper describes our model and its adoption in the OnToMap Participatory GIS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.