Many collaborative recommender systems leverage social correlation theories to improve suggestion performance. However, they focus on explicit relations between users and they leave out other types of information that can contribute to determine users' global reputation; e.g., public recognition of reviewers' quality.We are interested in understanding if and when these additional types of feedback improve Top-N recommendation. For this purpose, we propose a multi-faceted trust model to integrate local trust, represented by social links, with various types of global trust evidence provided by social networks. We aim at identifying general classes of data in order to make our model applicable to different case studies. Then, we test the model by applying it to a variant of User-to-User Collaborative filtering (U2UCF) which supports the fusion of rating similarity, local trust derived from social relations, and multi-faceted reputation for rating prediction. We test our model on two datasets: the Yelp one publishes generic friend relations between users but provides different types of trust feedback, including user profile endorsements. The LibraryThing dataset offers fewer types of feedback but it provides more selective friend relations aimed at content sharing. The results of our experiments show that, on the Yelp dataset, our model outperforms both U2UCF and state-of-the-art trust-based recommenders that only use rating similarity and social relations. Differently, in the LibraryThing dataset, the combination of social relations and rating similarity achieves the best results. The lesson we learn is that multi-faceted trust can be a valuable type of information for recommendation. However, before using it in an application domain, an analysis of the type and amount of available trust evidence has to be done to assess its real impact on recommendation performance.
Current recommender systems employ item-centric properties to estimate ratings and present the results to the user. However, recent studies highlight the fact that the stages of item fruition also involve extrinsic factors, such as the interaction with the service provider before, during and after item selection. In other words, a holistic view on consumer experience, including local properties of items, as well as consumers' perceptions of item fruition, should be adopted to enhance user awareness and decision-making. In this work, we integrate recommender systems with service models to reason about the different stages of item fruition. By exploiting the Service Journey Maps to define service-based item and user profiles, we develop a novel family of recommender systems that evaluate items by taking preference management and overall consumer experience into account. Moreover, we introduce a two-level visual model to provide users with different information about recommendation results: (i) the higher level summarizes consumer experience about items and supports the identification of promising suggestions within a possibly long list of results; (ii) the lower level enables the exploration of detailed data about the local properties of items. In a user test instantiated in the home-booking domain, we compared our models to standard recommender systems. We found that the service-based algorithms that only use item fruition experience excel in ranking and in the minimization of the error in rating estimation. Moreover, the combination of data about item fruition experience and item properties achieves slightly lower recommendation performance; however, it enhances users' perceptions of the awareness and of the decision-making support provided by the system. These results encourage the adoption of service-based models to summarize user preferences and experience in recommender systems.
The explanation and justification of recommender systems' results are challenging research tasks. On the one hand, a model-based description that clarifies the reasoning approach behind the suggestions might be difficult to understand, or it might fail to convince the user, if (s)he does not agree on the applied inference mechanism. On the other hand, an aspect-based justification based on few characteristics might provide a partial view of items or, if more detailed, it might overload the user with too much information.In order to address these issues, we propose a visual model aimed at justifying recommendations from a holistic perspective. Our model is based on a service-oriented summary of consumers' experience with items. We use the Service Journey Maps to extract data about the experience with services from online reviews, and to generate a visual summary of such feedback, based on evaluation dimensions that refer to all the stages of service fruition. Thanks to a graphical representation of these dimensions (based on bar graphs), and on the provision of on-demand data about the associated aspects of items, our model enables the user to overview the recommendation list and to quickly identify the subset of results that deserve to be inspected in detail for a final selection decision. A preliminary user study, based on the Apartment Monitoring application, has provided encouraging results about the usefulness and efficacy of our model to enhance user awareness and decisionmaking in the presence of medium-size recommendation lists. CCS CONCEPTS• Information systems → Web searching and information discovery; Recommender systems.
With the increasing demand for predictable and accountable Artificial Intelligence, the ability to explain or justify recommender systems results by specifying how items are suggested, or why they are relevant, has become a primary goal. However, current models do not explicitly represent the services and actors that the user might encounter during the overall interaction with an item, from its selection to its usage. Thus, they cannot assess their impact on the user’s experience. To address this issue, we propose a novel justification approach that uses service models to (i) extract experience data from reviews concerning all the stages of interaction with items, at different granularity levels, and (ii) organize the justification of recommendations around those stages. In a user study, we compared our approach with baselines reflecting the state of the art in the justification of recommender systems results. The participants evaluated the Perceived User Awareness Support provided by our service-based justification models higher than the one offered by the baselines. Moreover, our models received higher Interface Adequacy and Satisfaction evaluations by users having different levels of Curiosity or low Need for Cognition (NfC). Differently, high NfC participants preferred a direct inspection of item reviews. These findings encourage the adoption of service models to justify recommender systems results but suggest the investigation of personalization strategies to suit diverse interaction needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.