Corticotropin-releasing factor (CRF) immunoreactive (ir) neurons of the paraventricular nucleus of the hypothalamus (PVN) play pivotal role in the coordination of stress response. CRF-producing cells in the central nucleus of amygdala (CeA) and oval division of the bed nucleus of stria terminalis (BNSTov) are also involved in stress adaptation and mood control. Immediate early gene products, subunits of the transcription factor activator protein 1 (AP1) are commonly used as acute (FOS) and/or chronic (FOSB/deltaFOSB) markers for the neuronal activity in stress research. It is well known that the course of aging affects stress adaptation, but little is known about the aging-related stress sensitivity of CRF neurons. To the best of our knowledge, the stress-induced neuronal activity of CRF neurons in the course of aging in acute and chronic stress models was not studied systematically yet. Therefore, the aim of the present study was to quantify the acute restraint stress (ARS) and chronic variable mild stress (CVMS) evoked neuronal activity in CRF cells of the PVN, CeA, and BNSTov using triple-label immunofluorescence throughout the whole lifespan in the rat. We hypothesized that the FOS and FOSB content of CRF cells upon ARS or CVMS decreases with age. Our results showed that the FOS and FOSB response to ARS declined with age in the PVN-CRF cells. BNSTov and CeA CRF cells did not show remarkable stress-induced elevation of these markers neither in ARS, nor in CVMS. Exposure to CVMS resulted in an age-independent significant increase of FOSB/delta FOSB immunosignal in PVN-CRF neurons. Unexpectedly, we detected a remarkable stress-independent FOSB/deltaFOSB signal in CeA- and BNSTov-CRF cells that declined with the course of aging. In summary, PVN-CRF cells show decreasing acute stress sensitivity (i.e., FOS and FOSB immunoreactivity) with the course of aging, while their (FOSB/deltaFOSB) responsivity to chronic challenge is maintained till senescence. Stress exposure does not affect the occurrence of the examined Fos gene products in CeA- and BNSTov-CRF cells remarkably suggesting that their contribution to stress adaptation response does not require AP1-controlled transcriptional changes.
BackgroundAging sarcopenia characterized by low muscle mass with low muscle strength affects men and women differently. The contribution of interleukin-6 (IL-6) to sarcopenia has been suggested based on a negative correlation between plasma IL-6 and muscle function described by some studies. However, no consensus regarding clinically relevant cut-off criteria has been reached. Another question arises whether pooling male and female data is an accurate way to determine the predictive value of IL-6 in sarcopenia. The present meta-analysis was designed to assess: (1) whether plasma IL-6 in aged populations in fact correlates negatively to muscle strength; (2) whether such a correlation exists both in men and in women; and (3) whether plasma IL-6 shows a gender difference in old age.MethodsWe applied the preferred reporting items for systematic review and meta-analysis protocols (PRISMA). We searched PubMed and Embase for papers that reported data on individuals over 65 without inflammatory diseases. We extracted either separate male and female data on plasma IL-6 along with at least one muscle parameter or correlation coefficient between plasma IL-6 and these parameters. Random effect models calculated with DerSimonian and Laird weighting methods were applied to analyze correlation coefficients and gender difference in plasma IL-6. Egger’s test was used to assess the small study effect.ResultsTwenty articles out of 468 records identified were suitable for analyses. Plasma IL-6 correlates negatively with grip strength in mixed populations and also separately in men [− 0.25 with 95% confidence interval (CI): − 0.48, − 0.02] and in women (− 0.14 with 95% CI: − 0.24, − 0.03). However, contrary to expectations, men with better muscle condition have higher plasma IL-6 than women of similar age with worse muscle condition (plasma IL-6 male–female difference: 0.25 pg/mL with 95% CI: 0.15, 0.35).ConclusionThis is the first study to demonstrate that a higher predictive IL-6 cut-off level should be determined for aging sarcopenia in men than in women.Electronic supplementary materialThe online version of this article (10.1186/s12877-018-0798-z) contains supplementary material, which is available to authorized users.
BackgroundLeptin is one of the major adipokines in obesity that indicates the severity of fat accumulation. It is also an important etiological factor of consequent cardiometabolic and autoimmune disorders. Aging has been demonstrated to aggravate obesity and to induce leptin resistance and hyperleptinemia. Hyperleptinemia, on the other hand, may promote the development of age-related abnormalities. While major weight loss has been demonstrated to ameliorate hyperleptinemia, obese people show a poor tendency to achieve lasting success in this field. The question arises whether training intervention per se is able to reduce the level of this adipokine.ObjectivesWe aimed to review the literature on the effects of training intervention on peripheral leptin level in obesity during aging, in order to evaluate the independent efficacy of this method. In the studies that were included in our analysis, changes of adiponectin levels (when present) were also evaluated.Data sources3481 records were identified through searching of PubMed, Embase and Cochrane Library Database. Altogether 19 articles were suitable for analyses.Study eligibility criteriaEmpirical research papers were eligible provided that they reported data of middle-aged or older (above 45 years of age) overweight or obese (body mass index above 25) individuals and included physical training intervention or at least fitness status of groups together with corresponding blood leptin values.Statistical methodsWe used random effect models in each of the meta-analyses calculating with the DerSimonian and Laird weighting methods. I-squared indicator and Q test were performed to assess heterogeneity. To assess publication bias Egger’s test was applied. In case of significant publication bias, the Duval and Tweedie's trim and fill algorithm was used.ResultsTraining intervention leads to a decrease in leptin level of middle-aged or older, overweight or obese male and female groups, even without major weight loss, indicated by unchanged serum adiponectin levels. Resistance training appears to be more efficient in reducing blood leptin level than aerobic training alone.ConclusionsPhysical training, especially resistance training successfully reduces hyperleptinemia even without diet or major weight loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.