Fowl adenovirus (FAdV) is distributed worldwide and causes economic losses in the poultry industry. The objectives of this study were to determine the hexon and fiber gene changes in an attenuated FAdV isolate from Malaysia in specific pathogen-free chicken embryonated eggs (SPF CEE) and its infectivity in commercial broiler chickens. SPF CEE were inoculated with 0.1 mL FAdV inoculum via the chorioallantoic membrane (CAM) for 20 consecutive passages. The isolate at passage 20 (E20), with a virus titer of 108.7TCID50/mL (TCID50, 50% tissue culture infective dose), was inoculated (0.5 mL) into one-day-old commercial broiler chicks either via oral or intraperitoneal routes. The study demonstrated that 100% embryonic mortality was recorded from E2 to E20 with a delayed pattern at E17 onwards. The lesions were confined to the liver and CAM. Substitutions of amino acids in the L1 loop of hexon at positions 49 and 66, and in the knob of fiber at positions 318 and 322 were recorded in the E20 isolate. The isolate belongs to serotype 8b and is non-pathogenic to broiler chickens, but it is able to induce a FAdV antibody titer. It appears that molecular changes in the L1 loop of hexon and the knob of fiber are markers for FAdV infectivity.
Background Salmonella is a very important foodborne pathogen causing illness in humans. The emergence of drug-resistant strains also constitutes a serious worry to global health and livestock productivity. This study investigated Salmonella isolates from chicken and chicken meat products using the phenotypic antimicrobial screening as well as the molecular characteristics of Salmonella isolates. Upon serotyping of the isolates, the antimicrobial susceptibility profiling using a panel of 9 commonly used antimicrobials was done. Subsequently, the molecular profiles of all the isolates were further determined using Pulsed Field Gel Electrophoresis (PFGE) and the Whole Genome Multi-Locus Sequence Type (wgMLST) analysis in order to obtain the sequence types. Results The PFGE data was input into FPQuest software, and the dendrogram generated was studied for possible genetic relatedness among the isolates. All the isolates were found to belong to the Salmonella Enteritidis serotype with notable resistance to tetracycline, gentamycin, streptomycin, and sulfadimidine. The S. Enteritidis isolates tested predominantly subtyped into the ST11 and ST1925, which was found to be a single cell variant of ST11. The STs were found to occur in chicken meats, foods, and live chicken cloacal swabs, which may indicate the persistence of the bacteria in multiple foci. Conclusion The data demonstrate the presence of S. Enteritidis among chickens, indicating its preference and reservoir status for enteric Salmonella pathogens.
Salmonella enterica subspecies enterica serovar Enteritidis is one of the major foodborne zoonotic pathogens globally. It has significantly impacted human health and global trade. In this investigation, whole-genome sequencing was employed to determine the antimicrobial resistance (AMR) pattern of a collection of Salmonella Enteritidis isolated from humans, poultry, and food sources. The study also investigated the virulence genes profile of the isolates as well as the phylogenetic relationships among strains. Illumina NextSeq technology was used to sequence the genome of 82 Salmonella Enteritidis strains isolated over 3 years (2016–2018) in Peninsular Malaysia. The pattern of resistance showed that tetracycline had the highest frequency (37/82, 45.12%), and isolates from food samples showed the highest rate of 9/18 (50.00%), followed by human 17/35 (48.57%) and then poultry 11/29 (37.93%). The second drug with the highest resistance rate is ampicillin with 5/29 (17.24%) for poultry, 4/35 (11.43%) for human, and 0/18 (0.00%) for food isolates respectively. Similarly, a total of 19 antimicrobial resistance (AMR) genes corresponding to the nine drugs used in the disc diffusion assay were evaluated from the whole genome sequence data. The aminoglycoside resistance gene aac(6′)-ly was detected in 79 of the 82 isolates (96.34%). While the phylogenetic analysis revealed distinct lineages isolated, the three sources indicating possible cross-contamination. In conclusion, the results showed that the genomic profile of Salmonella Enteritidis isolated from humans, poultry, and food samples share genetic traits, hence the need to institute measures at controlling the continuous spread of these resistant pathogens.
Fowl adenovirus (FAdV) is the causative agent of inclusion body hepatitis (IBH) in chickens with significant economic losses due to high mortality and poor production. It was objectives of the study to attenuate and determine the molecular characteristic of FAdV isolate (UPM1137) of Malaysia passages in primary chicken embryo liver (CEL) cells. The cytopathic effect (CPE) was recorded and the present of the virus was detected by polymerase chain reaction (PCR). Nucleotide and amino acid changes were determined and a phylogenetic tree was constructed. The pathogenicity and immunogenicity of the virus at passage 35 (CEL35) with virus titre of 106.7TCID50/mL was determined in day old specific pathogen free (SPF) chicks via oral or subcutaneous route of inoculation. The study demonstrated that the FAdV isolate was successfully propagated and attenuated in CEL cells up to 35th consecutive passages (CEL35) with delayed of CPE formation within 48 to 72 post inoculation (pi) from CEL20 onwards. The virus caused typical CPE with basophilic intranuclear inclusion bodies, refractile and clumping of cells. The virus is belong to serotype 8b with substitution of amino acid at position 44, 133 and 185 in L1 loop of hexon gene and in knob of fiber gene at position 348 and 360 at CEL35. It is non-pathogenic, but immunogenic in SPF chickens. It was concluded that the FAdV isolate was successfully attenuated in CEL cells with molecular changes in major capsid proteins which affect its infectivity in cell culture and SPF chickens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.