Background Altered function of the hypothalamic–pituitary–adrenal (HPA) axis in type 2 diabetic patients, a condition preceded by pre-diabetes, has been shown to increase the risk of depression as well as cause downstream effects resulting in upregulation of gluconeogenesis and dyslipidemia. In addition, stress, either psychological from managing diabetes or lifestyle related, further activates the HPA axis causing an exaggerated stress response. This study investigated the activity of the HPA axis in selected markers of glucose handling, and the stress response relative to components of the HPA axis in a diet-induced pre-diabetic rat model. Methods Sprague Dawley Rats were randomly divided into non-pre-diabetic group (NPD) and pre-diabetic group (PD) (n = 6, per group) over a 20-week induction period and a further 12-week experimental period to get 32 weeks. At the end of the 20 and 32-week periods, glucose handling using the Homeostasis Model Assessment indices, adrenocorticotropic (ACTH) and corticosterone (CORT) concentrations were measured. Stress was induced and the forced swim test were performed in the 12-week experimental week. At the end of 32 weeks glucocorticoid and mineralocorticoid hippocampal receptors were also measured. Results Impaired glucose handling in the PD group as well as increase in corticosterone was observed at the end of both 20 and 32-week periods by comparison to NPD groups. No changes were observed in ACTH concentration at week 20 while, at week 32, a decrease in plasma ACTH concentration was observed in the PD group by comparison to the NPD group. The stressed-induced animals were stressed using the forced swim test: the behaviour observed showed an increase in immobility time in the PD stressed group by comparison to the NPD group. This was followed by the observation of a decrease in ACTH and CORT concentration in the PD stressed group by comparison to the NPD stressed group. Mineralocorticoid and glucocorticoid receptors gene expression were elevated in the stressed PD group relative to the stressed NPD group. Conclusion These observations, together, suggest that diet-induced pre-diabetes is associated with impaired HPA axis activity and deteriorating response to stress.
Background Studies suggest that Momordica balsamina (intshungu) possesses hypoglycaemic effects. The effects of Momordica balsamina on diabetic complications such as DN, however, have not been established. Accordingly, this study seeks to investigate the effects of M. balsamina on kidney function in STZ-induced diabetic rats. Methods Methanolic extracts (ME) of M. balsamina's leaves were used in this study. Short-term effects of M. balsamina methanolic extract on kidney function and MAP were studied in STZ-induced diabetic rats treated twice daily with M. balsamina methanolic extract (250 mg/kg), insulin (175 μg/kg, s.c.), and metformin (500 mg/kg) for 5 weeks. Results M. balsamina methanolic extract significantly increased Na+ excretion outputs in STZ-induced diabetic rats by comparison to STZ-diabetic control rats. M. balsamina methanolic extract significantly increased GFR in STZ-diabetic rats with a concomitant decrease in creatinine concentration and also reduced kidney-to-body ratio, albumin excretion rate (AER), and albumin creatinine ratio (ACR). M. balsamina methanolic extract significantly reduced MAP in STZ-diabetic animals by comparison with STZ-diabetic control animals. These results suggest that M. balsamina methanolic extract not only lowers blood glucose but also has beneficial effects on kidney function and blood pressure. Conclusion These findings suggest that M. balsamina may have beneficial effects on some processes that are associated with renal derangement in STZ-induced diabetic rats.
Diabetics are susceptible to hepatic dysfunction risks due to hyperglycaemia and insulin therapy. Conventional diabetes treatments improve glycaemic control; however, hepatic hazards associated with these agents remains a challenge. Accordingly, this study sought to investigate the effect of a dioxidovanadium complex (V) on the hepatic function in streptozotocin-induced diabetic rats. Sprague-Dawley rats (240–250 g) were divided into 4 groups (n = 6): nondiabetic control, diabetic control, insulin-treated, and vanadium complex groups. The dioxidovanadium (10, 20, and 40 mg/kg) was administered twice every 2nd day for 5 weeks and blood glucose concentration was monitored weekly. At the end of the experimental period, all the experimental groups were sacrificed, and then the lipid profile, liver superoxide dismutase, glutathione peroxidase and malondialdehyde, plasma alanine aminotransferase and aspartate aminotransferase, and C-reactive protein (CRP) concentration were measured. The administration of dioxidovanadium significantly alleviated hyperglycaemia with concomitant attenuation in oxidative stress as evidenced by reduced malondialdehyde concentrations. Furthermore, vanadium complex abolished diabetes-induced dyslipidaemia. Lastly, vanadium complex administration attenuated the increase in alanine aminotransferase, aspartate aminotransferase, and plasma C-reactive protein. These findings suggest that this metallo-compound (dioxidovanadium) may ameliorate liver dysfunction often observed in diabetes.
Aims/Introduction Derangements often observed with type 2 diabetes are associated with disturbances in renin–angiotensin–aldosterone system (RAAS) activity. A positive correlation between local RAAS activity and the complications observed in type 2 diabetes has been noted. However, the detrimental ramifications due to moderate hyperglycemia noted in prediabetes, and the affected organ system and mechanistic pathways are not elucidated. Hence, this study investigated the effects of diet‐induced prediabetes on RAAS in various organs. Materials and Methods Male Sprague–Dawley rats were separated into two groups: (i) non‐prediabetes through exposure to standard rat chow group; and (ii) diet‐induced prediabetes group by exposure to a high‐fat high‐carbohydrate diet for 32 weeks. RAAS activity in the skeletal muscle, adipose tissue, liver, pancreas and heart was determined through the analysis of RAAS components, such as renin, angiotensinogen, angiotensin‐converting enzyme and angiotensin II type 1 receptor through polymerase chain reaction, as well as the quantification of angiotensin II and aldosterone concentration. Furthermore, nicotinamide adenine dinucleotide phosphate oxidase, superoxide dismutase and glutathione peroxidase 1 concentrations were determined in the skeletal muscle, pancreas and heart, in addition to the hepatic triglycerides. Results The RAAS components were elevated in the diet‐induced prediabetes group when compared with the non‐prediabetes group. This was further accompanied by increased nicotinamide adenine dinucleotide phosphate oxidase and reduced superoxide dismutase and glutathione peroxidase 1 concentrations in the selected organs, in addition to the elevated hepatic triglycerides concentration in the diet‐induced prediabetes by comparison to non‐prediabetes group. Conclusions Due to these observed changes, we suggest that local RAAS activity in the prediabetes state in selected organs elicits the derangements noted in type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.